
Copyright © <22/11/2023> by <Soprolec>. All Rights Reserved.

InterpCNC V3
Manuals

ICNCStudio Help

2 / 116

Contents

PLC_Basic_Interpreter .. 5
Introduction .. 6
General ... 7
Error processing .. 7
Quick PLC Basic manual .. 8
FUNCTIONS .. 9

PLC Basic functions specific to InterpCNC V3 ... 10
Accessing User Bits and Registers (Read only) ... 11
Accessing System Bits and Registers (Read only) 11
Accessing Input Registers (Read Only) .. 12

Mathematic functions .. 13
Axis motion functions ... 13
Timers functions .. 14
Input and Output functions ... 14
Edge detection functions for Inputs or User Bits (coils) 15
Character strings manipulation functions ... 15

COMMANDS .. 18
Commands from standard Basic ... 18
Program management functions .. 18
PLC Basic commands specific to InterpCNC V3 .. 18

Write Access to User Registers and User Bits (Holding Registers and Coils) . 19
Commands specific to InterpCNC V3 hardware .. 20
Recipe management commands ... 21
Axis motion commands .. 21
Timers commands .. 22
Input and Output commands ... 23

IMPLEMENTING A GRAFCET (SFC) USING « Select Case» instruction 24
USING INTERRUPTS .. 25
USING THE FAST DIGITAL INPUTS (from #16 to 22) 27
COMMUNICATION WITH MODBUS DRIVES OR OTHER DEVICES 28
ETHERNET COMMUNICATION .. 29
USING DMX COMMUNICATION ... 31
USING REAL TIME CLOCK (RTC) ... 34

ICNCStudio ... 36
User_Registers ... 37
Saved_registers .. 38
Axes_window .. 39
Monitor ... 39
Digital_inputs .. 40
Digital_outputs .. 41
Coils ... 41
Text_editor .. 42
Find_Replace ... 46
Main ... 47
Parameters_table ... 48
Recipes ... 50
PLC_variables .. 52

ICNCStudio Help

3 / 116

Custom_Data ... 53
Charts ... 55
Analog_Counters ... 56
Firmware_update ... 56
ICNCStudio_update .. 57
Encryption ... 57
Parameters .. 59

General_configuration ... 60
Axes ... 61
DIN .. 61
AIN .. 64
IN_ENA .. 64
Serial_port .. 66
Polling .. 67
Ethernet .. 67
Digital_control ... 68
Plasma_thc .. 68

Release_note ... 70
InterpCNC V3 manual .. 72

Presentation .. 73
Setup .. 76
Wiring ... 77

MODBUS_documentation ... 79
Introduction .. 80

Identification of InterpCNC PLCs connected to the Ethernet network 81
Identification of InterpCNC PLCs connected via USB 81

Read/Write Parameters ... 82
Adresses of Input Bits (Read only) ... 82
Adresses of Input registers (Read only) .. 84
Adresses of Holding registers (Read/write) .. 89
About sending Modbus commands ... 90

Commande100 : Stop an axis .. 90
Command 101 : Stop one or several axes ... 91
Command 102: Move an Axis at a given Speed ... 91
Command 103: Move an Axis to Target Position .. 91
Command 104: Move an axis specified number of steps from current position 92
Command 105: Write Current Position Counter (same as writing to position
registers) ... 92
Command 106: Launch homing of an axis .. 92
Command 107: Launch a Probe on an input .. 94
Command 108: Start Probing on Multiple Inputs ... 94
Command 109: Launch of a Probing on analog input threshold 95
Command 110: Force Inputs ... 97
Command 200 : PLCBasic command .. 98

Using indexed Reads/Writes .. 98
CNC control functions ... 99

Part 1: Buffered commands ... 100
Command 1000 : Executing a Gcode instruction 100
Command 1001 : Definition of the machining speed in mm/min 101
Command 1002: Interpolated Linear Move of Axes to Target Positions

ICNCStudio Help

4 / 116

(Absolute Positions) .. 101
Command 1003 : Circular interpolation .. 102
Command 1010: Synchronized Action (Digital Output, Analog Output,
Register) ... 102
Command 1011: Buffered Timeout .. 104
Command 1012: Wait for State or Event ... 104

Part 2: Unbuffered Commands ... 106
Command 1100: Edit Override Machining and Rapid Traverse 106
Command 1101: Pause machining in progress 106
Command 1102: Resume interrupted machining 106
Command 1110: Execute a homing machine sequence 107
Command 1111: Execution of a manual move (Jog) 107
Command 1200: Direct execution of a command 108

Using the internal clock (RTC) .. 108
Command 112: Set Date on RTC Clock ... 109
Command 113: Set Time to RTC Clock ... 109
Command 114: Simultaneous setting of date and time on the RTC clock 110

Miscellaneous settings ... 110
Password protection ... 110
Standard inputs .. 111
Fast inputs ... 112
Using Analog inputs as Digital inputs .. 113
 I/O expansion modules .. 114
Exports and Imports of files ... 115

ICNCStudio Help

5 / 116

PLC_Basic_Interpreter

SOPROLEC
ZAC DE L'EPINE
72460 SAVIGNE L'EVEQUE
FRANCE
Tél : +33 (0)2 4376 4476

InterpCNC V3
SOPROLEC

Axes controller card

ICNCStudio Help

6 / 116

Integrated PLC Basic interpreter

Introduction

The InterpCNC V3 has a powerful built-in PLC Basic language interpreter. This interpreter
makes it possible to develop standalone automation applications or in association with a
man/machine interface (HMI).
The InterpCNC V3 communicates via an Ethernet connection (Modbus TCP or Modbus
UDP protocol), or Serial (RS485, Modbus RTU protocol), or USB (virtual Com port,
Modbus RTU protocol).

This interpreter works in parallel with the other functions of the card.
It is therefore possible to use the InterpCNC in digital control applications controlled by a
PC while executing the Basic program for the processing of particular actions (for
example, remote console for manual control of the machine).
Programming is done using the ICNCStudio software.

https://www.helpndoc.com/feature-tour/advanced-project-analyzer/
https://www.helpndoc.com/feature-tour/advanced-project-analyzer/

ICNCStudio Help

7 / 116

General
From a hardware point of view, the InterpCNC is a PLC card whose main characteristics
are:
· 6-axes control (Pulses / direction)
· 16 NPN and PNP compatible inputs
· 16 PNP outputs 500mA
· 4 analog inputs 0 to 10V
· 2 analog outputs 0 to 10V
· 7 quick entries
· Connectivity: Ethernet, USB, and 2 x RS485
· 1 OLED screen 0.96"
· 32-bit microcontroller
· Supply voltage: 24V

It has the advantage of integrating a PLC Basic interpreter, which makes it, as with all
SOPROLEC cards, one of the most user friendly in terms of programming.
This interpreter works with variables which can be character strings or real numbers.
All numeric values are real type coded on 32 bits single precision. The maximum value is
17549435e-38 and the minimum value is 3.40282347e+38.
Integers that can be manipulated without loss of precision must be within ±16777100.

Error processing
Being an interpreted language, errors in the program are detected during operation.
It is therefore important to be able to set up an error handler to interrupt any movements
when an error occurs.
The PLC Basic interpreter will automatically perform a GoTo at the OnError: label if a
runtime error occurs.
If this label is not present in the program, no special error processing will be performed.

In the following example, the main program is placed in a loop
 DO...LOOP.
If a processing error occurs, there will be an automatic GOTO at the OnError: label
In the processing of the error, one stops all the possible displacements in progress and
one deactivates all the exits. The program is then interrupted.
It is of course possible to add a GOTO type jump to the error processing to return to the
start of the program or resume execution at a particular label.
' Main program
Do
' Application code
Loop

' Error handling
OnError:
StopAxes &H3F ' Stop all axes (binary weight in hexadecimal)
OUTPort 0, 0 'Set outputs 0 to 7 to 0
OUTPort 1, 0 'Set outputs 8 to 15 to 0

You can therefore implement such a handler in your PLC Basic program using the reserved

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com

ICNCStudio Help

8 / 116

label OnError.

Similarly, the OnStopPLC: label defines the code to be executed if the program stops.
It can be brought to stop either by a STOP command provided in its execution, or by a
voluntary action (click on the green light in ICNCStudio).
Example:

OnStopPLC:
 ' Stop interrupts
 SetTick 1, 0, OnTimerEtiq1
 SetInputINT 4, -1, INPUT_INT_DFM_ONESHOT, OnCellObject

' Stop all Axes
 SetAna OUT_ANA_SPEED, 0
 SetAna OUT_ANA_COUPLE, 0
 StopAxes &h3F

 ? "OnStopPLC"
end

We can execute the same portion of code in both cases, by combining OnStopPLC: and
OnError: in a common label

OnStopPLC:
OnError:
...
...
...
end

The end instruction is only necessary if there is still code after it.

Quick PLC Basic manual

Of course, the InterpCNC V3 PLC Basic interpreter uses all the expressions, instructions,
operators, commands and functions, as well as the functions for manipulating character
strings, existing in all Basic languages.
Great programming classics, only a few of them will be explained in this manual.

The table below summarizes it:

Literal Expressions / User
Variables

Literal expressions
Strings are contained in quotes, ex :
"InterpCNC".
Les nombres peuvent être décimaux ou
représentés par:
&Hnn Hex Literal, ex : &H3C (60)
&Bnn... Binary Literal, ex : &B00100011

String formatting

% [flags] [width] [.prec] type
flags: - Left justify
0 Use 0 as shift character (not space).
+ The + sign denotes positive values.
space Space as a sign, unless negative.

width: minimum number of output
characters, minus cause of offset, plus
cause of expansion.

SELECT CASE Variable
CASE Value
CASE ValueFrom TO ValueTo
CASE Value IS < Limit
CASE ELSE
END SELECT

Strings / Characters
ASC (str$)
CHR$ (nbr)
FORMAT$ (nbr [,format$])

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

9 / 116

(35)
n.nE+n Scientific, e.g. 1.6E+4 (16000)
User Variables
Variable names begin with an alphanumeric
character or an underscore and can contain
any alpha or numeric character, period (.)
and underscore (_); the maximum length is
32 characters. Character string names are
terminated by the null character. Numeric
variable names are not terminated with the $
symbol.

Operators

Arithmetic
^ * / Exponentiation, Multiplication,
Division
MOD \ Modulus (remainder), Integer
Division
+ + - Addition, String concatenation,
Substraction

Logical
NOT Logic Inverse
= <> Equality, Inequality
> < Greater than, less than
<= or =< Less than or equal to
>= or => Greater than or equal to
AND OR Conjunction, Disjunction
XOR Exclusive Or

.prec: number of fraction digits for types e,
or f, or the max. significant digits for type
g.
Must be preceded by a period (.) if used.
Type: g or G format for the best
presentation.
f or F Decimal format with decimal point
and digits
e or E Exponential format

Commands / Declarations
Array declaration :
DIM variable(elements…)

Execution control
CONTINUE
DO <declarations> LOOP
DO WHILE expression <declarations>
LOOP
DO <declarations> LOOP UNTIL
expression
ELSE
ELSEIF expression THEN
ENDIF
END
EXIT
EXIT FOR
FOR counter = beginning TO end [STEP
increment]
GOSUB
GOTO
IF expression THEN
IRETURN
NEXT [variable-counter] [, variable-
counter]...
RUN
STOP
LIST
NEW

INSTR ([start,] search$, pattern$)
LEFT$ (str$, nbr)
LEN (str$)
LCASE$ (str$)
MID$ (str$, start [,nbr])
RIGHT$ (str$, nbr)
SPACE$ (nbr)
SPC (nbr)
STRING$(nbr, val|str$)
TAB(nbr)
UCASE$ (str$)
VAL (str$)
INKEY$

Functions

Maths / Nombres
ABS (nbr)
ATN (nbr)
CINT (nbr)
COS (nbr)
EXP (nbr)
FIX (nbr)
HEX$ (nbr)
INT (nbr)
LOG (nbr)
OCT$ (nbr)
RND (nbr)
SGN (nbr)
SIN (nbr)
SQR (nbr)
STR$ (nbr)

FUNCTIONS

A function differs from a command in that it can return a Value, a result.
To use it, just like for a command, we pass arguments to it as parameters, the number of
which is as many as necessary.

As in most programming languages, you can create your own functions yourself,
using function and end function statements.

To do so, the syntax is as follows:

function FunctionName(Param1,Param2,Param3,...)
...
... ' here lines of code using the Values contained in the variables passed as

parameters
...
if ... then Return=1

https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/

ICNCStudio Help

10 / 116

else Return=0

FunctionName=Return ' the return of a Value is done by assigning the variable
bearing the name of the function
end function

To return a result we use the name of the function as a global variable, which we will assign
to the calculated result or the Value that we wish to return.

PLC Basic functions specific to InterpCNC V3

Functions

GetMB(memo)
GetMW(adr)
GetMDW(adr)
GetMI(adr)
GetMDI(adr)
GetMF(adr)

StsBit(BitNbr)
GetInputMB(BitNbr)
GetInputMW(adr)
GetPrm(nbr)

IsEEdataChanged
IsRPCChanged
IsMBPrmChanged

Min(nbr, nbr)
Max(nbr, nbr)
Limit(nbr, Min, Max)

GetPos(nbr)
GetCapturePos(nbr)

GetTimer (str)
Toc(nbr)
Cyclestat(nbr)

IN(nbr)
Ain(nbr)
AinV(nbr)
Out(nbr)

GetEncoder(nbr)
GetCnt(nbr)

DF(nbr)
DFM(nbr)
DFD(nbr)

DFMBit(nbr, nbr)

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

11 / 116

DFDBit(nbr, nbr)

Accessing User Bits and Registers (Read only)

GetMB(Memo)
 ou
GetMB(Register, Bit)

Reading a Memo bit (Coil) in the Memos space (user
Coils), or a particular bit in the registers area.
Example :
if GetMB(MBB_ONOFF_CONVEYOR) then …
‘if the conveyor ON/OFF bit is at 1, then…
if GetMB(3100, 15) then…
‘if the 15th bit of address 3100 (U16, here in Ram) is to
1, then...
if GetMB(3100, 31) then…
‘if the 31st bit of address 3100 (U32, here in Ram) is at
1, then...

GetMW(Register) Reading an unsigned 16-bit register (U16)
Example :
ResolutionAxe2 = GetMW(EE_RESO_AXE2) /10
‘Assigment in a variable, of the Value stored in the
corresponding register (U16) in EEprom

GetMDW(Register) Reading an unsigned 32-bit register (U32)
Example :
TotalCounter = GetMDW(EE_CNT_TOTAL)
‘Assigment in a variable, of the Value stored in the
corresponding register (U32) in EEprom

GetMI(Register) Reading a signed 16-bit register (I16)
Example :
Offset = GetMI(RCP_OFFSET_BOTTLE)
*ResOrientator/360

GetMDI(Register) Reading a signed 32-bit register (I32)
Example :
Target = GetMDI(POSITION_SPOT) + Offset

GetMF(Register) Reading a 32-bit register treated as a Float (FLOAT)
Example :
ResolConveyor = GetMF(EE_RES_CONVOYEUR)
‘Assigment in a variable, of the Value stored in the
corresponding register (FLOAT) in EEprom

Accessing System Bits and Registers (Read only)

StsBit(BitNo)

BitNo : Status bit number from 0 to 359

Reading of the state of one of the card's register
bits.
Example :
If not StsBit(256) then…
‘If Axis 1 is no longer moving, then...

GetInputMB(BitNo) Read the state of one of the card's register bits
(Input Bits, from 0 to 359, read-only). Same as
StsBit.
If not GetInputMB(256) then…
‘If Axis 1 is no longer moving, then..

GetInputMW(RegisterNo) Read the status of one of the card registers (Input

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com

ICNCStudio Help

12 / 116

Registers, from 1000 to 1143, read-only).
Example :
FirmVerHigh = GetInputMW(1115)
FirmVerLow = GetInputMW(1116)
? « Firmware Version : », FirmVerHigh, " ",
FirmVerLow
‘Shows the Firmware version of the card in the
Monitor

GetPrm(ParameterNumber)

ParameterNumber : parameter ID from 0 to 999

Reading the Value of a card parameter by knowing
its identifier.
? GetPrm (20) ‘Displays in the monitor, the Value
of parameter 20.

IsEEdataChanged Returns 1 if the contents of non-volatile user memory
have been modified (NB: the state of
IsEEdataChanged is immediately reset after
being read/tested).
Example :
If IsEEdataChanged then CalculateParameters()

IsRCPChanged Returns 1 if the contents of the EEProm user
memory dedicated to recipes has been modified
(NB: the state of IsRCPChanged is immediately
reset to zero after being read/tested).
Example :
If IsRCPChanged then ? « Recipe modified! »

IsMBPrmChanged Returns 1 if the content of the user EEProm storing
the card parameters has been modified (NB: the
state of IsMBPrmChanged is immediately reset
after being read/tested).
Example :
If IsMBPrmChanged then CalculateParameters()

Accessing Input Registers (Read Only)

As a reminder, the Input Registers are located between addresses 1000 and 2512, and
between addresses 11000 and 12220 for the buffers (see the Modbus documentation for
the correspondence of these registers).
The same reading functions as for Holding Registers can be used, provided that 1xxxxx is
added to the register address.

Examples :

GetMW(Register+100000) Reading an unsigned 16-bit Input Register (U16)
Example :
FirmVerLow = GetMW(101115)
FirmVerHigh = GetMW(101116)
‘Assignment in a variable, of the Value stored in the
corresponding register (U16)

GetMDW(Register+100000) Reading an unsigned 32-bit Input Register (U32)
Example :
NbFramesDMXRecues = GetMDW(101998)
‘Assignment in a variable, of the Value stored in the
corresponding register (U32)

GetMI(Register+100000) Reading a signed 16-bit Input Register (I16)

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

13 / 116

Example :
I16Value = GetMI(1xxxxx)
‘Assignment in a variable, of the Value stored in the
corresponding register (I16)

GetMDI(Register+100000) Reading a signed 32-bit register (I32)
Example :
PositionAxe1 = GetMDI(101030)
‘Assignment in a variable, of the Value stored in the
corresponding register (I32)

GetMF(Register+100000) Reading a 32-bit Input Register treated as a Float
(FLOAT)
Example :
FloatValue = GetMF(1xxxxx)
‘Assignment in a variable, of the Value stored in the
corresponding register (FLOAT)

NB : GetInputMW(1115) is equivalent to GetMW(101115) but for consistency with other
commands, it is best to use GetMW(Register+100000)

Mathematic functions

Min(Value1, Value2) Returns the minimum Value between the Values (or
variables) Value1 and Value2.
Caution: Value 1 and Value 2 are treated as integers.
Example :
 MinVoltage = Min(AinV(1), AinV(2))
‘MinVoltage reads the smallest Value (voltage) on 2
analog inputs

Max(Value1, Value2) Returns the maximum Value between the Values (or
variables) Value1 and Value2.
Caution: Value 1 and Value 2 are treated as integers.
Example :
VoltageMax = Max(Ain(3), Ain(4))
 ‘VoltageMax records the highest Value (points)
on the 2 analog inputs

Limit(Value, Mini, Maxi) Returns Value, bounded between Min and Max. Very
useful to test a variable avoiding a succession of "if...
then... else..."
Example :
NewPosition = Limit(CurrentPosition, 10000, 30000)
‘Whatever the Value of CurrentPosition, NewPosition
will remain limited between 10000 and 30000

Axis motion functions

GetPos(AxisNumber)
AxisNumber : number of the Axis, from 1 to 5

Reading of the position counter of an axis. The return
is a signed 32-bit integer.
Example :
 PositionAxis_1 = GetPos(1)

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

ICNCStudio Help

14 / 116

Timers functions

GetTimer(VariableTimer) Reading a timer initialized with SetTimer. Returns the
time remaining on a timer initialized with the
SetTimer command. When the timer has elapsed,
this function returns 0.
Example : SetTimer Tempo1, 100

if GetTimer(Tempo1) then
out 1,1
endif

Toc(instance number from 0 to 15) Returns the period of time elapsed since the Tic
command (in microseconds)
Example :
? Toc(1)

Cyclestat(instance number from 0 to 15) Updated time measurement instance.
Used to measure a cycle time, Values to be retrieved
from the 3 MW registers defined during the
CyclestatInit command.
The times are given in 1/10 ms
Example :
CycleStat(1)
‘Refreshes stats in the 3 designated registers

Timer Returns the elapsed time (in ms) since the card was
powered on.
Example :
Print Timer/1000; ''seconds elapsed''

Time$ Returns in the form of a character string, the time
elapsed since power-on.
Format: hh:mn:s,ms
Example :
? "Last Powered On At:", Time$

Input and Output functions

IN(InputNumber)

InputNumber : Input number 0 to 255

Reading the state of an input. Result = 0 or 1.
Example :
if not IN(8) then ? « Low air pressure »
‘If input 8 is at 0, then print « Low air pressure »

Ain(ChannelNumber)

ChannelNumber : Analog input number 0 to 3

Reading the state of an analog input in millivolts.
Example :
If Ain(1) > 5000 then

Out 1, 1
else

Out 1, 0
endif

AinV(CanalNumber)

ChannelNumber : Analog input number 0 to 3

Reading the state of an analog input in Volts
Example :

If AinV(1) > 3,30 then
Out 1, 1

else

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

15 / 116

Out 1, 0
endif

Out(OutputNumber)

OutputNumber = 0 to 15

Reading the current state of an output.
Example :
? Out(15) ‘Displays in the monitor, the state of output
15

Edge detection functions for Inputs or User Bits (coils)

DF(number or name of the input) Rising or falling edge detection of an input.
This function is used to detect the transition from
state 0 to state 1 between two calls to this function.
Examples :
if DF(2) then SetAlarme()
 ‘If input 2 state changes, then…
or
if DF(IN_LOCK) then

? « Intrusion ! »
SetAlarme()

endif
‘if the input detecting the lock changes state, then
we execute our alarm function

DFM(number or name of the input) Rising or falling edge detection of an input.
Example :
 if DFM(CELLULE_OBJET) then ? « Object
detected » ...

DFD(number or name of the input) Falling edge detection of an input. This function is
used to detect the transition from state 1 to state 0
between two calls to this function.
Example :
if DFD(PRESSURE_SWITCH) then ClearAlarme()

DFMBit(instance number (1 to 64), Value of
the tested bit)

Detection of a rising edge on a tested bit.
Example :
if DFMBit(2, GetMB(MBB_ALARM)) then ?
« Interruption of cycles on Alarm » ...

DFDBit(Numero d’instance(1 à 64), Value of
the tested bit)

Detection of a falling edge on a tested bit.
Example :
if DFDBit(3, GetMB(MBB_ALARM)) then ?
« Alarms Acknowledgment »

Character strings manipulation functions

REMINDER: The PRINT command is one of the fundamentals of all Basic language
variants.
It is used to display the content of character strings, variables, or a result returned by a
function, in the console (Monitor) of the Basic interpreter.

It can be used in conjunction with the comma -> to display multiple expressions separated
by a space.
Example:

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/iphone-website-generation

ICNCStudio Help

16 / 116

A$="Sir"
PRINT "Hello",A$
-> Will render:
Hello Sir

It can also be used with the semicolon -> to display several expressions in a row without
space between them. This is the concatenation of character strings.
Example:

A$="Sir"
PRINT "Hello";A$
-> Will render:
HelloSir

The concatenation of character strings can also be achieved using the + operator.
Example:

A$="12345": B$="6789"
C$ = A$+B$ 'Concatenation of both strings
PRINT C$
-> Will thus render: 123456789

Function Description Example

ASC(characters_string)
Returns the ASCII code (integer value) of
(or the first) string character.

A$ = "Hello"
b = ASC(A$)
PRINT b
ou
PRINT ASC("Hello")
→ Returns H

BIN$(integer) Returns the binary weight of the integer
part of a number.

PRINT BIN$(15)
→ Returns 1111

CHR$(ascii_code) Returns the character corresponding to the
ASCII code.

PRINT CHR$(68)
→ Returns D

HEX$(integer)
Returns the Hexadecimal value
corresponding to the integer part of the
number.

PRINT HEX$(65535)
→ Returns FFFF

INSRT(length, string1, string2) Search all or part of a character string in
 another, and returns the start position.

A$ = "Learn PLC-BASIC"
B$ = "BAS"
C = INSTR(2, A$, B$)
PRINT "The word BA starts at
position "; C
→ Returns 11

ICNCStudio Help

17 / 116

LCASE$(characters_string) Returns the character string transformed
into letters lowercase.

A$="COMPUTER"
PRINT LCASE$(A$)
-> Returns computer

LEFT$(characters_string,
 length)

Returns a portion of the string from the
indicated length, starting from the left.

A$ = "INTERPCNC"
L$ = LEFT$(A$, 6)
PRINT L$
→ Returns INTERP

LEN(characters_string) Returns the length of the character string.

A$ = "INTERPCNC"
L = LEN(A$)
PRINT L
→ Returns 9

MID$(characters_string,
position,
 length)

Returns a portion of the string from the
indicated position, for the given length.

A$ = "INTERPCNC V3"
S$ = MID$(A$, 7, 3)
PRINT S$
→ Returns CNC

OCT$(integer) Returns the octal value of the integer part
of a number.

PRINT OCT$(8)
→ Returns 10

RIGHT$(characters_string,
 length)

Returns a portion of the string from the
indicated length, starting from the right.

A$ = "INTERPCNC"
L$ = RIGHT$(A$, 3)
PRINT L$
→ Returns CNC

SPACE$(integer) Returns a string with the number of spaces
specified.

FOR i = 1 TO 6
A$ = SPACE$(i)
PRINT A$; i
NEXT I

STRING$(repetition,
character)

Returns a string containing the character
specified repeated n times.

PRINT STRING$(2,68)
Ou
PRINT STRING$(2,"D")
→ Returns DD

STR$(real_number) Returns the string representation of a real
number of characters.

N = 453.1
PRINT STR$(n)
→ Returns 453.1

TIME$

Returns the time elapsed since power on of
the card.
(NB: The assignment like:
TIME$="00:00:00" cannot modify this
duration.)

PRINT "Sous tension depuis: ";
TIME$
→ Returns Time in the
format(example): 00:25:30

UCASE$(characters_string) Returns the string converted to capital
letters.

A$="computer"
PRINT UCASE$(A$)
→ Returns COMPUTER

VAL(characters_string)
Returns the numeric value located at the
beginning of a character string.
Returns 0 (zero) if there is none.

N$="1234B5"
X=VAL(N$)
PRINT "Valeur attendue: "; X
→ Returns 1234

ICNCStudio Help

18 / 116

COMMANDS

A command differs from a function, in that it does not return any value, nor result.
To use it, we pass arguments to it as parameters or settings.
When using a command, only an action is expected (writing or reading bits or registers,
moving axes, starting a timer, etc...)

Commands from standard Basic

Run Starts the PLC Basic program
Stop Stops Basic PLC Program Execution
List Displays the listing of the PLC Basic program present in Ram, in the Monitor window
Print (or ?) Displays the expression in inverted commas, or the value of a variable, in the

Monitor window.
The use of semi-colon will append several expressions in the same Print command.
The use of comma will separate several expression with spaces.
Examples:
? "Hello";"World" -> will show "HelloWorld"
Print "Production =",Counter,"units" -> will show "Production = 33 units"

Program management functions

New Erase the PLC Basic program in Ram
SaveProgram Saves the program present in RAM in Flash memory
LoadProgram Loads the program present in Flash memory to place it in RAM. This command

is called automatically at power-up if the "Automatic PLC Start" parameter is
active. It will then be followed by a RUN command also called automatically.

PLC Basic commands specific to InterpCNC V3

Command

SetMB memo, nbr
SetMW adr, nbr
SetMDW adr, nbr
SetMI adr, nbr
SetMDI adr, nbr
SetMF adr, nbr
IncMDW adr[, nbr]
CopyReg adr, nbr

Unlock

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

19 / 116

Lock
ListFlash
Msg
SaveProgram
LoadProgram
SetPrm nbr, nbr

CopyRCP
InsertRCP
RemoveRCP

SetPos nbr, nbr
MoveAxe nbr, nbr, nbr, nbr
MoveSpeed nbr, nbr, nbr
Home nbr, nbr, nbr, nbr, nbr, nbr, nbr, nbr
Probe nbr, nbr, nbr, nbr, nbr, nbr, nbr
StopAxes nbr
StopAxeID nbr

Pause nbr
SetTimer str, nbr
Timer
Time$
Tic nbr
CycleStatInit nbr, adr, adr, adr

SetIN nbr, nbr
OUT nbr, nbr
OUTPort nbr, nbr
SetAna nbr, nbr
SetAnaV nbr, nbr

SetEncoder nbr, nbr
SetCnt nbr, nbr

SetTick nbr, nbr, str
SetInputInt nbr, nbr, str
SetCaptureInt nbr, nbr, str
SetCaptureIDOnInputInt nbr, nbr

Write Access to User Registers and User Bits (Holding Registers and Coils)

SetMB Memo, Value
 ou
SetMB Register, Bit, Value

Set or Reset of a Memo bit (Coil) in the Memos
(User Coils) area, or a particular bit in the register
area.
Example :
SetMB MBB_ALARM, 1
‘set an alarm bit to 1
SetMB 3100,15,0
‘setting to 0 of the 16th bit of register 3100 (Ram)
SetMB 3100,31,1
‘set the 32nd bit of register 3100 to 1 (Ram)

SetMW Register, Value Write to an unsigned 16-bit register (U16).

https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/

ICNCStudio Help

20 / 116

Example :
SetMW GCYCLE, 10 ‘writes value of 10, to the
address named GCYCLE

SetMDW Register, Value Write to an unsigned 32-bit register (U32)
Example :
SetMDW EE_COUNTER_TOTAL,
GetMDW(EE_COUNTER_TOTAL)+1

‘increment by 1 of the EEprom register
storing the value of the total counter

SetMI Register, Value Write to a signed 16-bit register (I16)
Example :
SetMI 3010, -32767

‘writes -32767, to adress 3010 (defined here
as I16, in Ram)

SetMDI Register, Value Write to a signed 32-bit register (I32)
Example :
SetMI 3010, -999999

‘writes value -999999, at address 3010 (here
defined as I32, in Ram)

SetMF Register, Value Writing a FLOAT type number to a 32-bit register
(FLOAT)
Example :
SetMF 3200, 3.14159
‘writes value 3.14159, to address 3200 (here
defined as FLOAT, in Ram)

IncMDW Register[, +/-Value of the increment
=1]

Used to increment a 32-bit register by the Value
indicated or by +1 if the second parameter is not
specified.
Example 1 : IncMDW 3020, 5 ‘ Increment by 5
Example 2 : IncMDW 3030 ‘ increment by 1

CopyReg Address of 1st source Register (0
to 65535), Destination Address (Holding
Register from 0 to 65535), Number of
registers (0 to 65535)

Copies a memory area containing the specified
number of registers to a destination address.
Example with Holding Registers :
CopyReg 3000, 3200, 16
‘copies registers from 3000 to 3015, to registers
from 3200 to 3215’
Example with Input Registers :
CopyReg 101030, 3000, 12
‘copies the 6 axes position registers (Input
Registers from 1030 to 1041), to adresses from
3000 to 3011 (Holding Registers)’

Commands specific to InterpCNC V3 hardware

Unlock Unlocking the board.
When the board is unlocked, all Axes moves or output
activation commands are made possible.

Lock Locking the board.
When the board is locked, all Axes moves or output activation
commands are inactive.

ListFlash Displays the list of PLC Basic program present in Flash
memory, in the monitor window

https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/

ICNCStudio Help

21 / 116

SaveProgram Saves the PLC Basic program currently in Ram, in Flash
memory (same action as clicking on the SD Card icon)

LoadProgram Loads the PLC Basic editor program into RAM.
SetPrm Number, Value

Number : parameter ID, from 0 to 999

Writing the Value of an InterpCNC parameter knowing its id.
Example :
SetPrm 20, 1300 ' Initial frequency of Axis 1 movements, set
to 1300hz

Msg Displays a message on the Oled screen of the card.
Max length is 15 chararcters (if more, will be ignored).
The message is always centered on the line.
Same use as the Print command.
Example:
Msg "Prod =",Counter,"units"
 -> will show "Prod = 33 units"

Recipe management commands

CopyRCP Source recipe, Target recipe Function that copies a Recipe to another Recipe location.
NB : RCP_SIZE (adress 9995 -> number of registers
allocated for each recipe) must have been defined
beforehand.
Example :
CopyRCP 0,1 ‘Copies recipe 0 to recipe 1

InsertRCP Destination Position, Source
Recipe

Inserts a copy of a recipe at the specified location. The
following recipes are staggered.
Example :
InsertRCP 1,4 ‘Inserts a copy of recipe 4, in position 1

RemoveRCP RecipeNumber Deletes a recipe. The following recipes are staggered.
Example :
RemoveRCP 1 ‘Supprime la recette n°1

Axis motion commands

SetPos AxisNumber, Value

AxisNumber : Axis number 1 to 5
Value : Position value

Writing of the position counter of an axis. This
function should not be called while the axis is
moving. The AxisNumber parameter is used to
indicate the axis concerned by the command.
Example :
SetPos 3, 1000 'Writes 1000 to the Y axis counter

MoveAxe AxisID, Accel, Speed, Decel,
Position

AxisID : Axis ID (1 to 6)
Accel : Acceleration, in Hz/s
Speed : Pulse Frequency, in Hz
Decel : Deceleration, in Hz/s
Position : Target, in motor steps

Moves the axis to a target position.
Example :
MoveAxe 1, 1500, 10000, 1500, 50936
'X movement

MoveSpeed AxisID, accel or decel
(according to target), speed (signed)

Rotation to a specific speed (signed speed)
Example :
MoveSpeed 1, 1500, 10000

Home AxisID, InputNumber, InputState, Accel,
HighSpeed, Decel, (+/-)MaxStep, LowSpeed,

Starts a homing sequence. Several commands can
be launched simultaneously on different axes. This

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/

ICNCStudio Help

22 / 116

[HomePosition], [MoveStepAfterHome]

AxisID : Axis to initialise (1 to 6)
InputNumber: Entry number used for

referencing
InputState : State of the input when the

contact is activated (0 or 1)
Accel : acceleration for the rapid

movement towards the sensor
HighSpeed : Fast speed to sensor
Decel : deceleration for the rapid

movement towards the sensor
(+/-)MaxStep : gives the direction of
movement and the Max travel for the Homing

LowSpeed : sensor clearance speed
[HomePosition] Value at which the

position counter is initialized before clearing
[MoveStepAfterHome] target position

for clearance (relative to home position)

function is used to find a home position using a
sensor placed on the stroke of an axis.
Example :
Home 2, 2, 0, 25, 20000, 25, 1000000, 1000, 0
''Axis 2 origin on input N°2 NC type, over a
maximum travel of 1000000 steps. Home position
initialized to 0

Probe AxisID, InputNumber, InputState, Accel,
Speed, Decel, (+/-)MaxStep

AxisID : Axis to initialise (1 to 6)
InputNumber: Entry number used for

referencing
InputState : State of the input when the

contact is activated (0 or 1)
Accel : acceleration for the movement

towards the sensor
Speed : Speed towards sensor
Decel : deceleration for the movement

towards the sensor
(+/-)MaxStep : gives the direction of
movement (signed value) and the maximum
stroke for probing

Launching a probing.
Example :

Probe 1, 3, 0, 25, 50000, 25, 1000000

‘Probing on Axis 1, sensor on input 3, NC type,
acceleration and deceleration of 25kHz, speed of
50000 Hz, on 1000000 steps Max ‘

StopAxes Value
Value : binary (selected axis=Bit to 1)

or Hexadecimal, or decimal

Stopping of one or more axes.
Example :
StopAxes &B111111 ‘Stop for all 6 axes (binary
axis selection)
StopAxes &H3F ‘Stop for the 6 axes (Value 3F in
Hex for the selected bits)
StopAxes 63 ‘Stop for all 6 axes (Decimal value for
selected bits)

StopAxeID Value Stopping an axis by its identifier (number and name).
Example :

StopAxesID 2
ou StopAxesID LABELLER_AXIS

Timers commands

Pause ppp Pause of ppp millisecond in program execution.

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/

ICNCStudio Help

23 / 116

ppp = lasting time in ms
Interrupt processing, on the other hand, is not
interrupted during a pause.
This function can also be used in interrupt processing.
Example :
‘activation of output 1 for one seconde:

OUT 1,1 'Activation output 1
PAUSE 1000 'Pause of 1000ms
OUT 1,0 'Desactivation of output 1

SetTimer NameOfVariable, Duration_ms Initialization of a timer variable. The duration is
expressed in milliseconds. Command for use with the
GetTimer function.
Example :
SetTimer Tempo1, 500

Tic Number of instance (1 to 15) Starts a time capture, in microseconds.
Example : Tic 1

CycleStatInit Number of instance (1 to 5),
min. time, current time, max. time

Initializes a time measurement function. The Values will
be stored in the 3 MW registers (16bits) indicated. The
times are given in 1/10 ms.
Example :
 CycleStatInit 1, 3015, 3016, 3017
or
 CycleStatInit 1, TPLC_MIN, TPLC_ACTUAL,
TPLC_MAX

Input and Output commands

SetIN Input Number, State
Input : 0 to 255
State : -1 No forcing, forcing to 0,

forcing to 1

Forcing the state of an input.
Example :
SetIN 3, 1 ‘forcing input 3 to 1

OUT OutputNumber, Value
Number : 0 to 95
Value = 0 or 1

Activation/deactivation of a discrete output (OUT 0 to
OUT 15).
Outputs OUT 0 to OUT 15 are physical outputs.
Outputs 16 to 95 are outputs that can be used via an
external device (Modbus or USB interfaces)
Example :
OUT 4,1 ‘Sets the state of output 4 to 1

OUTPort NumPort, Value

NumPort : 0 to 11
Value : 0 to 255

Used to define the state (0 or 1) on an 8-output (8-bit)
port.
Example :
for i = 0 to 11 : OUTPort i, 0 : Next i ‘Reset all outputs

SetAna Channel, Value
Channel = 0 or 1 (AOUT0 ou AOUT1)
Value = 0 to 10000

Sets the level of an analog output in mV points (0 to
10000).
Example :
SetAna 1, 5000 'Analog output AOUT1 is set to 5V

SetAnaV Channel, Tension
Channel = 0 or 1 (AOUT0 or AOUT1)

Voltage = 0 to 10V

Defines the level of an analog output in Volt (0 to 10v).
Example :
SetAnaV 1, 5.51 Analog output AOUT1 set to 5,51V

https://www.helpndoc.com/news-and-articles/2022-09-27-why-use-a-help-authoring-tool-instead-of-microsoft-word-to-produce-high-quality-documentation/
https://www.helpndoc.com/news-and-articles/2022-09-27-why-use-a-help-authoring-tool-instead-of-microsoft-word-to-produce-high-quality-documentation/
https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/

ICNCStudio Help

24 / 116

IMPLEMENTING A GRAFCET (SFC) USING « Select Case» instruction
The “Select Case” instruction easily allows the creation of a Grafcet (aka SFC), and gives
greater readability to your program, compared to a sequence of the type “If Step=10 then…
Else… Endif”

The associated available instructions are:

Select Case Variable
Case Value
Case ValueFrom to ValueTo
Case Value is < Limit
Case Else
End Select

Example of use:

Suppose we want to create a PLC cycle of 4 steps (step 0, 10, 20, and 30) in which we will
activate/deactivate output 1 according to the state of input 1, then activate/deactivate
output 2 with a time delay of 1000ms.

We will use for Example a variable named “GCycle1” , which in turn will take the current
step Value. This will be reassigned at the end of each step, which will allow you to move on
to the next one on the next round of the DO … LOOP loop.

GCycle1 = 0 ‘ Initialisation of the sequence to step 0
DO

Select Case GCycle1

Case 0
if IN(1) then

Out 1,1
GCycle1 = 10

Endif

Case 10
if not IN(1) then

Out 1,0
GCycle1 = 20

Endif

Case 20
Out 2,1
SetTimer tempo1, 1000
GCycle1 = 30

Case 30

if GetTimer(tempo1)=0 then
Out 2,0
GCycle1 = 0

Endif

Case Else
? "Programming error"

End Select
LOOP

Thus, each "Case .." instruction will make it possible to process, for each step Value of the

ICNCStudio Help

25 / 116

GCycle1 sequence, the code to be executed.

USING INTERRUPTS
You can program three types of interruptions.
· Periodic interruptions
· Interrupts related to the state of the inputs
· Interrupts on axis positions
The latency for processing an interrupt is < 5µs.
You can implement up to 32 different interrupt treatments (periodic or input-related).
Interrupt processing must end with the iReturn instruction
When interrupt processing is no longer required, you can disable it by specifying:
A period of 0 for Periodic interrupts,
An input number = -1 for an input related interrupt.

Periodic interruptions

Set up using the SetTick command.
A jump to the indicated label will be carried out according to the period specified when
setting up the interruption.
SetTick InterruptNumber, Period, Label

InterruptNumber : Number of the interrupt from 1 to 32
Period : Interrupt period in milliseconds
Label : Label where to find the interrupt handler.

Example of periodic interruption:
SetTick 1, 500, OnInt1 ' Implementation of a periodic interrupt of 500ms
do
… ' application code
Loop
OnInt1 :
Out 5, not Out(5) ' Changes state of output 5
iReturn

Interrupts Related to the State of the Inputs

In order to lighten the writing of the application and react quickly to a change of input state,
you can set up an interrupt treatment which will carry out this check and execute the desired
code.
This type of treatment can support:
• The change of state of an input (change to 0 or 1),
• The transition from state 0 to state 1 of an input (rising edge),
• The transition from state 1 to state 0 of an input (falling edge).
This processing is implemented using the SetInputInt command.
SetInputInt :
Syntax : InterrupNumber, InputNumber, Type, Label

InterrupNumber : Number of the interrupt from 1 to 32
InputNumber : Number of the input to be monitored (0 to 255)
Type : Type of control
1 to control all status changes (INPUT_INT_DF)
2 to control the transition from state 0 to state 1 of the input (INPUT_INT_DFM)
3 to control the transition from state 1 to state 0 of the input (INPUT_INT_DFD)

https://www.helpndoc.com/help-authoring-tool

ICNCStudio Help

26 / 116

4 to check all status changes, only once (INPUT_INT_DF_ONESHOT)
5 to check the transition from state 0 to state 1 of the input, once only

(INPUT_INT_DFM_ONESHOT)
6 to check the transition from state 1 to state 0 of the input, once only

(INPUT_INT_DFD_ONESHOT)
Label : Label where to find the interrupt handler.

NB : to cancel an interrupt, just run the exact same SetInputInt command again, but use "-1"
as the input number.

Example : Management of a limit switch input
' Normally Closed limit switch on input 8
SetInputInt 1, 8, 3, OnFDC1
do
… 'Application code, here
loop
' limit switch input processing
OnFDC1:
StopAxeID 1 'Axis 1 stopped
iReturn

Interrupts on Axis positions

 SetCaptureInt : Interruption on axis position reached. The interrupt is automatically
cleared. AxeNumber=0 to cancel the interrupt.
Syntaxe : SetCaptureInt IntNumber, AxisNumber, CapturePosition, LabelCode

IntNumber : instance number (from 1 to 32)
AxisNumber : 1 to 6 (on Motorized axes),7 to 9 (on Encoder inputs), 10 to 16

(on Counters on Fast Inputs)
CapturePosition : target position (in motor steps)
LabelCode : Interrupt code located at the Label

Example : SetCaptureInt 10, 2, LabellerTarget, OnLabellerPos

SetCaptureIDOnInputInt : Configuration of position captures on fast input interrupts (16
to 22). For use with GetCapturePos(AxeID)
The interest of this command is to allow the capture of positions on the axes,
independent of the execution of the PLC Basic program. Thus, the captures having priority
over the execution of the PLC Basic program, these take place with perfect regularity
without variation in the response times.
Syntax : SetCaptureIDOnInputInt InputNumber, AxisID
Example : SetCaptureIDOnInputInt IN_CEL_LABEL, LABELLER_AXIS

NB: These interrupts do not work on a manual override of inputs, only on a physical signal.
The input must also have been configured in IT or counter mode (parameters 220 to 226).

Only one input can be assigned to an axis. Any reassignment of an axis on an input cancels
and replaces the previously declared interruption.

GetCapturePos(: Reading of the position captured on an axis during the interruption.
(Configured with SetCaptureIDOnInputInt).
Syntax : GetCapturePos(AxisID)

ICNCStudio Help

27 / 116

Example : ? "Captured Position = ", GetCapturePos(ORIENTATOR_AXIS)

USING THE FAST DIGITAL INPUTS (from #16 to 22)

In Encoder mode

We can have 3 encoders because 2 fast inputs are required for each of the encoders.
Channel 0: inputs 21 and 22. Frequency up to 1Mhz
Channel 1: inputs 19 and 20. Frequency up to 50 khz
Channel 2: inputs 17 and 18. Frequency up to 50 khz
Card parameters 221 to 226 must be configured in Mode 4 (4X, all edges are taken into
account), or in Mode 3 (2X, 1 edge out of 2 is taken into account).

GetEncoder(: Returns the position of an encoder input
Syntax : GetEncoder(Channel) ‘Channel from 1 to 3.
Example : SetMDW 3018, GetEncoder(3)

SetEncoder: Assignment of a Value to an encoder input
Syntax : SetEncoder Channel, Value ‘Channel : from 1 to 3.
Example : SetEncoder 3, 0 ‘Setting encoder input 3 to 0

In Counter mode

It is therefore possible to have 7 counters. Card parameters 220-226 need to be
configured:
In mode 0 (standard), the refreshing of the table storing the state of the inputs takes place
every millisecond.
In mode 1 (on "IT" interrupt), the refreshing of the table storing the state of the inputs takes
place on each interrupt accessing it.
In mode 2 (Counter mode), the refresh of the table storing the state of the inputs takes
place on each edge (rising or falling, depending on the configuration of the polarity of the
inputs (card parameter 200)).
The period between 2 events can be read in the 32-bit modbus registers (Input registers)
1130 to 1142.

GetCnt(: Reading of one of the counters associated with fast inputs 16 to 22.
The result is an unsigned integer.
Syntax : GetCnt(CounterNumber)

CounterNumber = 1 to 7
Example : SetMDW 3018, GetCnt(4) ‘Writes to address 3018 the Value read from
counter n°4

SetCnt : Writing in the counters of fast inputs 16 to 22. The InterpCNC has 7 fast inputs
which can be used as counting inputs.
Syntax : SetCnt CounterNumber, Value

Counter Number = 1 to 7
Value = Value for the counter

Example : SetCnt 4, 0 ‘Resets counter number 4

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

28 / 116

COMMUNICATION WITH MODBUS DRIVES OR OTHER DEVICES
Each of the COM1 and COM2 ports can be used for MODBUS control of drivers or VFD.
In this case, the InterpCNC V3 card will be "Master".
Beforehand, it will be necessary to study the documentation of your driver/VFD, to know the
Modbus addresses of its main registers to use:

Basic communication
→ Mode, Baud Rate, Data Bits, Parity, Stop Bits, ID as Slave

In principle, these settings must be defined either from the keypad on the front of the drive,
or using parameter setting software and connection to the PC.
Other settings may be necessary, such as input operating mode, direction of rotation, etc...

It will obviously be necessary to enter identical parameters on the side of the InterpCNC V3
card (registers 400 to 405 for the use of COM1, registers 420 to 425 for the use of COM2).
Additional parameters:
COM1 : register 408 (minimum delay between each frame)

register 409 (number of attempts before returning a communication error)

COM2 : register 426 (minimum delay between each frame)
register 427 (number of attempts before returning a communication error)

Use of MBRTU Commands
The MBRTU.Send command will send a Modbus frame via COM1 or 2, destined for the
drive ID (Slave), with a specified data type (Example: Holding Register).
The Value to be sent will be read from a source register or bit (or several consecutive ones)
in the Master (the InterpCNC V3 card), to be written to the specified register or bit (or
several consecutive ones) of the slave.
Thus, for example, we can write to the speed register of the drive to vary the latter.

Structure of the MBRTU.Send command:
 (the members of a command can be either variables or direct Values)

MBRTU.Send COMPort, JobType, SlaveID, MasterAddress, SlaveAddress, DataSize,
MIRegisterNumber

COMPort is the number of the COM port used (1 or 2)
JobType is the type of action (Read or Write) depending on the type of data access
(Read/Write, Read only):

MB_RTU_WRITE_HOLDING_REG or «5» , and MB_RTU_READ_HOLDING_REG or
«2»

MB_RTU_WRITE_COIL or «4», MB_RTU_READ_COIL or «0»
MB_RTU_READ_INPUT or «1», MB_RTU_READ_INPUT_REG or «3»

MasterAddress is the source address on the Master side
SlaveAddress is the destination address on the Slave side
DataSize is the number of consecutive data (registers or bits)
MIRegisterNumber is a register in which an error code will be returned (-14 = no
error)

It should be noted that the mode of access to Input Registers or Input Bits by adding

https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

ICNCStudio Help

29 / 116

+100000 to the address also works.
It can, for example, be used to read them directly on the Master in the
MB_RTU_READ_HOLDING_REG mode (instead of MB_RTU_READ_INPUT_REG)
in order to directly copy the Value of an Input Register on the Master, to a Holding
Register on the slave. Example :

const INPUTS_SHADOWS = 3022
const RESULT_COM_VAR5 = 3036

MBRTU.Push 2, MB_RTU_WRITE_HOLDING_REG, 5, 101000, INPUTS_SHADOWS, 2,
RESULT_COM_VAR5

This command will therefore copy via COM2, the state of physical inputs 0 to 31 of the
InterpCNC card to registers 3022 and 3023 of the slave. (The result of the
communication will be stored at the Master in address 3036).

The MBRTU.Push command is identical, except that successive commands will be in a
queue, executed in the order of arrival.

MBRTU.Push COMPort, JobType, SlaveID, MasterAddress, SlaveAddress, DataSize,
MIRegisterNumber

Example :
MBRTU.Push COMVariateurs, MB_RTU_WRITE_HOLDING_REG, VAR_CONVOYEUR,
HZ_CONVEYOR_BELT, REGISTER_SPEED_VAR, 1, RESULT_COM_VAR5
could also be written:
 MBRTU.Push 2, 5, 5, HZ_CONVEYOR_BELT, 3, 1, 3030

Commande MBRTU.Flush(PortCOM) clears the not yet processed MBRTU command
queue. Example : MBRTU.Flush(1)

Function MBRTU.Count(PortCOM) returns the number of orders currently in the queue.

Example :
 if MBRTU.Count(COMDrive)>25 then
 ? "Drive command sending error"
 endif

It can be used for example to detect a communication problem. Indeed, a number of
unprocessed commands that accumulate in the queue are revealing.

ETHERNET COMMUNICATION
Each InterpCNC V3 card is equipped with an Ethernet port, which not only allows it to be
used remotely by ICNCStudio, but also to communicate with each other.
The interest may be for Example to constitute a network of several PLC stations or axis
controllers on a production line, needing only one program on the card called "Master" (or
"server") .

In Ethernet, 2 protocols coexist: UDP and TCP.
UDP is the easiest to use. The TCP meanwhile, if heavier to implement, is much more
reliable and more secure.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

30 / 116

As a result, TCP was chosen for communication between InterpCNC boards.
Thus we will be able to access the registers, in read or read/write, of each of the connected
cards, and even send them Modbus commands.

Use, controls and functions

Here is a simple demo program:

We assume here that our Server card addresses a Robot equipped with a Client card
whose IP address is 192.168.10.11
→ const IP_ROBOT="192.168.10.11"

We first define as constants the addresses of the memory areas where to write and read
on the Client card (const ROBOT_OUTPUT_ADDR = 0 and const ROBOT_INPUT_ADDR =
10000),
 (const ICNC_INPUT_ADDR=1000 and const ICNC_OUTPUT_ADDR=2160).
The following constants are not essential, they are just used here to calculate connection
statistics.

1) Open a « Socket »
Prerequisite: choose a user bit (coil), which will report the availability of the socket to
receive requests.
Example : MBB_SOCK_BUSY, at Modbus address 96

SockRobot = MBClient.Open(IP_ROBOT, 502, MBB_SOCK_BUSY)
Function MBClient.Open opens a Socket, and returns a Socket number that will be stored
in a variable (here: SockRobot)
→ parameters: client IP address, port no., status bit name

2) Send read or write requests
NB : The Socket is available to receive read or write requests when its status bit (here,

ICNCStudio Help

31 / 116

MBB_SOCK_BUSY) is at 0.
→ if not getMB(MBB_SOCK_BUSY) then

REG_ICNC_INPUT_COPY is a 16-bit user register, say at address 3000,
and ICNC_INPUT_ADDR (read-only address 1000) corresponds to the 16-bit mapping
of digital inputs 0 to 15 of the Server card).
Thus :
SetMW REG_ICNC_INPUT_COPY, GetInputMW(ICNC_INPUT_ADDR)
will copy the state of inputs 0 to 15 from the Server, to address 3000.

Write request :
MBClient.WriteVar SockRobot, MB_WRITE_HOLDING_REG_TO_HOLDING_REG,
REG_ICNC_INPUT_COPY, 1, ROBOT_OUTPUT_ADDR, 0

Function MBClient.WriteVar allows to send a write request to the Client:
→ parameters :
IP address of client, command MB_WRITE_HOLDING_REG_TO_HOLDING_REG,
starting address to copy (Server side), number of registers to copy, destination address
(Client side), time allocated in ms.

Requête en lecture :
MBClient.ReadVar SockRobot, MB_READ_HOLDING_REG, ROBOT_INPUT_ADDR,
1, ICNC_OUTPUT_ADDR, SCAN_RATE
Function MBClient.ReadVar allows to send a read request to the Client:
→ settings:
client's IP address, command MB_READ_HOLDING_REG, start address to copy (Client
side), number of registers to copy, destination address (Server side), allocated time in ms.
NB: You can stack up to 10 requests (Read or Write).
The MBB_SOCK_BUSY Status Bit drops to zero after sending them.

3) Close a Socket

We use MBClient.Close
→ parameters : socket number
Example : MBClient.Close SockRobot

NB : Sockets are automatically closed when stopping the PLC program.

USING DMX COMMUNICATION
Introduction :
DMX is a very widespread communication protocol in the world of entertainment, allowing
the
control of various devices (light games, motorized actuators (patiences, spinners, etc.).

DMX 512 exists in Device mode (for drives or projectors) or in
Master mode to control the Devices (Example: lighting console).

The InterpCNC allows you 2 operating modes:
Device mode available on the COM1 port
Master mode available on the COM2 port.

In Device mode, you can therefore control outputs or motors from a DMX console.

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com

ICNCStudio Help

32 / 116

In master mode, you can program device control sequences by interacting
with the PLC inputs.

I) Connection:

Connecting your DMX512 console to the InterpCNC V3 card is very simple. Just connect
the
D+ (green wire) and D- (yellow wire) signals from the DMX socket of your console,
on the D+ and D- inputs of the COM1 or COM2 port of the InterpCNC card.

II) DMX Device Mode Setup:

In the table of parameters, it is a question of configuring the COM1 port in DMX mode:

The Base address is the number of the 1st DMX channel from which you want to work, and
the number of channels
used will indicate the range of channels used from the Base Address.

The “Base address” parameter is used to modify the DMX address of the PLC without
renumbering
the channels used in the PLC program.

III) Using DMX Device in your program:
The availaable functions are :

StsBit(STS_DMX_CONNECTED) → This status bit indicates whether a DMX link is
established (If at 1).

IsDMXReceived →Indicates that a DMX frame has just been received (If at 1). It is
automatically
cleared after reading.
Examples :

if IsDMXReceived then
…

ICNCStudio Help

33 / 116

endif
or again

SetMB DMXReceived, IsDMXReceived
(→ copy of the state of the system bit, in a user bit named DMXReceived)

When this bit is at 1, it is time to read the channels using the following functions :

GetDMX(channel number (1 to 512)) → Retrieves the Value between 0 and 255 present on
this channel.

Note: The channel number actually used depends on the "Base address" parameter. If the
parameter is set to 1, the GetDMX(1) command returns the Value of the first DMX channel.
If the "Base address" parameter is 10, the GetDMX(1) command will actually return the
Value
of channel 10.

Examples :
speed = GetDMX(2)

or
if GetDMX(1)>127 then
 Out Output1 = 1
else
 Out Output1 = 0
endif

or again

GetDMX16(n° of the 1st channel (1 to 511)) → Retrieves Values from 0 to 255 of 2
consecutive channels,
and restores a Value from 0 to 65535
Formule : Value of 1st channel + Value of 2nd channel*256

III) Using DMX Master in your program :

SetDMX channel number, ValueDMX → Writing an 8-bit Value to a DMX channel
SetDMX16 channel number, ValueDMX → Writing of a 16-bit Value on 2 consecutive
DMX channels.

SetDMXMaster MasterLevel → Weighting of all DMX channels.

Example :
SetDMXMaster 255 ‘ the DMX channels will be transmitted as given by the SetDMX

or SetDMX16 commands
SetDMXMaster 0 ‘ The channels will be sent with a Value 0 (black out)
SetDMXMaster 127 ‘ The channels will be sent with a Value divided by 2

All the channels and also the DMX Master Value are accessible via modbus in the
read/write registers from addresses 5000 to 5512.

https://www.helpndoc.com
https://www.helpndoc.com

ICNCStudio Help

34 / 116

USING REAL TIME CLOCK (RTC)

Real Time Clock (RTC) functions

The InterpCNC has an internal clock to manage the date and time. This clock however, is
not saved when the power is turned off. It should therefore be initialized before using its
functions.
Initialization can be done by:
The modbus commands 112, 113 and 114 (detailed in Modbus InterpCNC documentation)
The PLC program using the RTC command
Automatically via an SNTP server if the InterpCNC has internet access.

Automatic synchronization:
For automatic update by STNP, parameters 546 and 547 must be correctly set. The SNTP
server used is “sntp.pool.org”.
The clock will then be initialized taking into account the time zone indicated in parameter
547 and
summer/winter time if bit b1 of parameter 547 is active.
You have 2 status bits that allow you to determine the synchronization status:
stsBit(STS_RTC_SYNCHRONIZED) which indicates that the clock has been set,
stsBit(STS_SNTP_CONNECTED) which indicates that an SNTP connection is
established.
Synchronization by SNTP server, if activated, is automatically renewed every hour.

PLCBasic commands and functions:
You have 3 instructions to exploit the RTC clock. For each of them, several function codes
will be detailed below:

RTC RTC_SubCommandeCode, ... for commands that do not return a response,
RTC(RTC_SubFunction, ...) for functions that return a numeric Value,
RTC$(RTC_SubFunction, …) for functions that return a character string

Function codes are pre-defined constants in ICNCStudio (System\RTC)

Also note that several of the functions detailed below use variables of type
UnixTime. This is an internal format and therefore cannot be directly manipulated by users.
arithmetic function (addition, subtraction). For operations on these variables, please
use the functions provided.

The information managed by the RTC (date and time) is also available in the Modbus
registers (Input registers) 1987 to 1995
You can therefore access it from the PLC with the command GetMW(at addresses
101987 to 101995.

RTC command details:
RTC command code (Syntax: RTC RTC_SubCommand,)
RTC RTC_SetTime, hh, min, ss
 => Manual clock time setting. If SNTP synchronization is active,
this operation is not necessary because the time will be synchronized automatically.
RTC RTC_SetDate, dd, mm, yy
 => Manual clock date setting. If SNTP synchronization is active,
this operation is not necessary because the date will be synchronized automatically .
RTC RTC_SetAlarmeA, hh, min, s, dayOfMonth_or_DayOfWeek[, d_meaning=0][,

ICNCStudio Help

35 / 116

mask=0]
 => Programming of alarm A. The triggering of alarm A causes a call to the sub routine
onAlarmA() which must exist in your program.
 - dayOfMonth_or_DayOfWeek can be any day in month from 1 to 31 if d_meaning =
RTC_DAY_OF_MONTH or a weekday from 1 to 7 if d_meaning = RTC_DAY_OF_WEEK
- mask allows advanced programming of the alarm.
 bit 0 of mask is used to mask the seconds of the time
 bit 1 of mask is used to mask the minutes of the hour
 bit 2 of mask is used to mask the hours of the hour
 bit 3 of mask hides the day of the date
 Setting a mask bit to 1 triggers the alarm regardless of the Value of the concerned field.
 Example:
 mask = &b1000, day is masked => the alarm will go off every day at hh:mn:ss (whatever
dd)
 mask = &b1100, day and time are masked => Periodic alarm every hour at mn:ss
(whatever dd,hh)
 mask = &b1110, day, hour and min are masked => Periodic alarm every minute at ss
(whatever dd,hh,mn)
 mask = &b1111, day, hour and min and second are masked => Periodic alarm every
seconds (regardless of dd,hh,mn,s)
RTC RTC_SetAlarmeA, hh, min, s, dayOfMonth_or_DayOfWeek[, d_meaning=0][,
mask=0]
 => identical to alarm A but call to a subroutine called onAlarmB
RTC RTC_StopAlarmA
 => Disable alarm A
Alarms are automatically disabled when the PLC enters STOP mode
RTC RTC_StopAlarmeB
 => Disable alarm B
Alarms are automatically disabled when the PLC enters STOP mode
RTC RTC_SetAlarmAutime, utime[, mask=0]
 => operation identical to RTC_SetAlarmeA but the date and time of the alarm are given
by
an instance of UnixTime type.
UnixTime type instances are obtained with the RTC(...) functions and allow you to
simple time operations.
RTC RTC_SetAlarmButime, utime[, mask=0]
=> identical to alarm A but call to a subroutine called onAlarmB

RTC RTC_CalcSunPosition, utime, latitude, longitude, MF_AZIMUTH, MF_ELEVATION
=>
Calculates the position of the sun at a given time. The results are given in registers of type
Float (register numbers given in MF_AZIMUTH and MF_ELEVATION)
Example :
 const MY_LATTITUDE = 48.064422
 const MY_LONGITUDE = 0.28127
 Actualutime = RTC(RTC_GetActualUTime) ‘ Current date and time
 RTC RTC_GetSunPosition, Actualutime, MY_LATTITUDE, MY_LONGITUDE,
SUN_AZIMUT, SUN_ELEVATION

Details of the RTC(function

utime = RTC(RTC_GetActualUTime)
 => returns a UnixTime type instance representing the current date and time
utime = RTC(RTC_GetMakeUTime, d,m,y,h,mn,s)

ICNCStudio Help

36 / 116

 => creation of a UnixTime type instance corresponding to the date and time indicated
Delta_s = RTC(RTC_DiffTime, utime1, utime2)
 => returns the time difference in seconds between two instances of UnixTime type. Let
utime2-
utime1 in seconds.
sum_utime = RTC(RTC_AddToUtime, utime, +/-second
 => returns a UnixTime type instance corresponding to a temporary delay of the instance
ultimate. The offset is expressed in seconds and can be positive or negative.

DayLen = RTC(RTC_DayLength, day, month, year, lon, lat[, phase=0]) => Returns the
duration in
time of day.

sunriseHour = RTC(RTC_SunRise, day, month, year, long, lat[, phase=0][,
do_adjustDST=1]) => Sunrise time at the specified longitude and latitude (in hours)

sunsetHour = RTC(RTC_Sunset, day, month, year, long, lat[, phase=0][,
do_adjustDST=1]) =>
Sunset time (in hours) at the indicated longitude and latitude

SunRiseUtime = RTC(RTC_SunRiseUTime, UTime, longitude, latitude[,
type=RTC_SUNSET_TIME][,do_adjustDST=1]) => Sunrise time in UnixTime format.
Can be used to perform calculations on hours,

SunSetUTime = RTC(RTC_SunsetUTime, UTime, longitude, latitude[,
type=RTC_SUNSET_TIME][,do_adjustDST=1]) => Sunset time in format
UnixTime. Can be used to perform hour calculations.

Details of the RTC$(function

RTC$(RTC_GetTimeStr)
 => Returns a string representing the current RTC time in "hh:mn:ss" format
 Example: ? RTC$(RTC_GetTimeStr); "Time-stamped information message"

RTC$(RTC_GetDateStr)
 => Returns a character string representing the current RTC time in "dd/mm/yy" format
 Example: ? RTC$(RTC_GetDateStr); "Time-stamped information message"

RTC$(RTC_GetDateTimeStr)
 => Returns a character string representing the current RTC time in the format
"dd/mm/yyh:mn:ss"
 Example: ? RTC$(RTC_GetDateTimeStr); "Time-stamped information message"

ICNCStudio

ICNCStudio - Development and diagnostic software

The InterpCNC V3 card comes with the ICNCStudio software, designed specifically for
development, diagnostics, and debugging of your PLCBasic programs.
It allows access to all the functions of the card and to all parameters.
Please note that this software and in particular the movement functions must be reserved
for experienced users with advanced knowledge of programming and/or automation.

https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

37 / 116

More than a tool, ICNCStudio is a real software development studio (hence its name) for
your InterpCNC V3 card.
Unlike the previous generation of "Test Center" software, it brings together in a single
screen all the windows dedicated to each type of parameter.
These windows are no longer floating and independent because they are part of a larger
common window.
However, they remain resizable and movable at your convenience on the application
space, and you can "Lock the layout of windows" (see "Tools" tab).

Integrated context-sensitive help is available by pressing the "F1" key, wherever
your cursor is,
or for the text selected in the editor (Example: finding the syntax for using a command or a
function.

User_Registers

– User Registers window (="Registres Utilisateur") -> RAM
These registers correspond to Modbus addresses 3000 to 3999.

For each User Register, you directly set the type in the "type" column of the register, as
follows:

U16 and U32 : 16 and 32 bit integers.
I16 and I32 : 16 and 32 bit signed integers.
FLOAT : floating numbers.

You can also for each line, insert a comment (for Example to specify a measurement unit,
etc...)

Contextual Menus :

– On the User Register tables:

https://www.helpndoc.com/feature-tour/iphone-website-generation

ICNCStudio Help

38 / 116

 « Insert Line » and « Remove Line »

Saved_registers
- Saved Registers window (="Registres sauvegardés")

We may still call it EEprom in this manual, but in fact this is rather non volatile RAM.
These registers correspond to Modbus addresses 4000 to 4999.

NB: This saved memory area does not correspond to a classic EEprom, but to
Ferromagnetic RAM memory.
The latter, of a much more advanced technology, allows almost unlimited write cycles, and
much faster access times.

For each Saved Register, you directly define the typing in the "type" column of the register,
as follows:

U16 and U32 : 16 and 32 bit intergers.
I16 and I32 : 16 and 32 bit signed integers.
FLOAT : floating numbers.

You can also for each line, insert a comment (for Example to specify a measurement unit,
etc...)

Contextual Menus :

– On Saved Register tables:
 « Insert Line » and « Remove Line »

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

39 / 116

Axes_window
Axes window, allowing manual control and testing of movements on the 6 axes.

The card must first be in Enable and Unlock mode.

The icon under the word "pas"(=steps) displays a line of options.
1) Choose option

It is thus possible to go:
- To a target absolute position ("Cible")
- To a position incremented from the current relative position ("Incrément")
- Forcing ("Forçage") simply allows you to force the Value of the position counter for the

axis.

2) Enter a Value (in steps, i.e in pulses)

3) Click on "Action"

The STOP button is used to immediately stop the movement in progress.

Monitor

– Monitor PLC window (=Console)
In this window are displayed your Prints ("?") during the execution of the program,
thus allowing debugging,
or to follow the good progress of the steps.

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

40 / 116

Digital_inputs
Digital Inputs window (DIN= Digital IN)

This window is actually tables refreshed almost in real time when the connection is
established between ICNCStudio and your card.
In this table, you can enter and assign a name to the corresponding Bits, and force their
state (0 or 1).
You can also for each line, insert a comment (for Example to specify the role of this entry...)

Contextual Menus :

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

41 / 116

– On the Inputs table (DIN) :
« Remove Forcing (R) », « Force to 0 », « Force to 1 », « Insert Line », « Remove
Line »

Digital_outputs
Digital Output window (DOUT = Digital OUT)

This window is actually tables refreshed almost in real time when the connection is
established between ICNCStudio and your card.
In this table, you can enter and assign a name to the corresponding Bits, and force their
state (0 or 1).
You can also for each line, insert a comment (for Example to specify the role of this
output...)

Contextual Menus :

– On the Outputs table (DOUT) :
« Force to 0 », « Force to 1 », « Insert Line », « Remove Line »

Coils
User Bits window (COILS, also called Memo Bits)

This window is actually tables refreshed almost in real time when the connection is
established between ICNCStudio and your card.
In this table, you can enter and assign a name to the corresponding Bits, and force their
state (0 or 1).

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/

ICNCStudio Help

42 / 116

You can also for each line, insert a comment (for Example to specify the role of this bit...)

Contextual Menus :

– On the COIL table (= Memo Bits) :
« Set to 0 », « Set to 1 », « Insert Line », « Remove Line », « Serach in the
Program »

Text_editor

– PLCBasic Program window, with to its left the Definition List of all the parameters
used by your Basic program:

– Program Body, your Functions and Subroutines, System (bit and registers),
Constants, Axes, Inputs, Outputs, User Bits (Memo), User Registers, Saved
Registers, and Recipes.

NB : The Definition List is automatically fed by your declarations of constants in
the program, as well as your naming in the arrays. It is scrollable (clicks on +/-).

From this list, you can also "Drag and drop" the name of a variable, constant,
register, input, output or a system parameter, to the input area of the text editor for
the y copy directly, which is a form of autocompletion.

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

43 / 116

A click on the green light, allows you to run or stop the Basic program currently in
Ram or in the non-volatile memory of the card.

– The editor's Command bar
This is part of the Basic program window. When the program is not running (ie
stopped), you can run a command in Basic.

– NB: the variables used in the program are available for the command line.
– Example 1: ? CounterProd
– → will display in the monitor the last Value contained in your CounterProd variable
– Example 2: for i= 3000 to 3511:SetMW i,0: Next i
– → command erasing all the user registers of the Ram.
–
– The central window is common to the Basic program, the list of board Parameters,

and the Recipe Editor. The tabs allow you to switch from one to the other.

Optimized readability of your programs

All: Register name, Bit name, Input name, and Output name, used become more readable
(Caps+Italics) if they are already declared in the corresponding table.
So, in the absence of Shift+Italics, you know that you are surely in the presence of a typing
error.

– Basic functions, commands and instructions appear in Blue.
– Numerical Values appear in Rose.

ICNCStudio Help

44 / 116

– Comments (after quotes or between quotes: ' or ' ') appear in Green.
– The contents for the "print" ("?") command are in Red.
– When you click on a variable, Bit name, Register name, Input or Output name, all

occurrences are shown with an Orange highlight.
– With the card connected, when you leave your cursor over a constant associated

with a register, its contextual information will appear (Modbus address, type of
register (MW, MDW, etc.)

Structure of a Basic program

By default, the Program Body includes an "Init" block, as well as a "Main" block.

The Init block must contain all your constant declarations, as well as the code used, as its
name suggests, to initialize your program.
The principle is that the code contained in this block will be executed once when the
program starts, then the execution will continue on the Main block.

The Main block will contain your main code (combinatorial code, PLC cycles, etc...).
All the code contained in this block will be repeated in a loop, just as if it were between
DO... LOOP tags

You can create as many additional blocks as necessary, by clicking on the icon
symbolizing a red brick. Their naming is free.
The ideal is to place in this type of block your functions, your subroutines, as well as the
code corresponding to the labels of your interrupts.
Ultimately, this is code that is executed occasionally, ie called by the main program (from
the Main block).

Including one block in another
At any point in your program, whether in the Main block or in any other block, it is possible
to link the current execution with the contents of another complete block.
We will use the Include statement for this.

Example:
Suppose we have created a block named "Functions".

If in the Main block we encounter:
#Include Functions

Then the execution of the Main block will proceed transparently as if all the lines of code of
the Functions block were in place of the "#Include Functions" line.

Regions

Derived from other languages, the notion of region has also been implemented in
ICNCStudio, as it also contributes to the readability of your program.
#region Name and #end region tags,are used to delimit certain portions of the program,
which you can then hide (click on -) or display again (click on +).
This way you have fewer lines to cover if you hide areas that have already been completed
and tested, or that do not concern a feature that you are developing.

ICNCStudio Help

45 / 116

Integrated Help

By clicking on the yellow question mark "?", or by pressing the F1 key, you display the help
topics that you can browse or in which you can enter a search (keyword).

If you have previously made a selection in the editor (of an instruction, a command, a
function, etc.), then the help will offer you either to choose an occurrence if there are
several, or will point directly to the corresponding item.

Keyboard shortcuts

Ctrl+A : Select All

Ctrl+B : Add Bookmark

Ctrl+Maj+B : Delete Bookmark

Ctrl+C : Copy selection

Ctrl+Maj+ C : Comment/Un-comment

Ctrl+E : Evaluate an expression → If ICNCStudio is connected to the card, returns the
current Value of the expression

Ctrl+F : Search for an expression (Find)

Ctrl+G : Go to line #xxx

Ctrl+H : Search and Replace

Ctrl+I : Auto-indentation of the selection (of the whole page if no selection)

Ctrl+N : Next bookmark

Ctrl+Maj+N : Previous bookmark

Ctrl+O : Exit ICNCStudio

Ctrl+S : Save changes

Ctrl+U : Set selection to Uppercase

Ctrl+V : Paste selection

Ctrl+X : Cut selection

Ctrl+Z : Cancel last action

Ctrl+Maj+Z : Re-do last action

Shift+Ctrl+C : Comment selection

ICNCStudio Help

46 / 116

Find_Replace

The Find and Replace function of ICNCStudio is very powerful, because it allows you to
automatically substitute the name of a variable in your PLC Basic program, or that of a
Register, or even that of a Bit, by another name for all occurrences and in all areas of your
PLC project.

Thus this renaming, requested from the text editor, will be carried out automatically not only
in all the program blocks (Init, Main, and others created by you...), but also in all the tables
concerned (User registers, Saved registers, DIN, DOUT, COILS, Axes, Recipes, ...

The Find and Replace window is launched either with a right click on the target
expression, then choose “Replace”(Remplacer)

or with the keyboard shortcut Ctrl + H:

NB: All occurrences encountered then appear in a window such as the one above.

Then simply keep the occurrences for which you want to apply the renaming checked (and

https://www.helpndoc.com/feature-tour/iphone-website-generation

ICNCStudio Help

47 / 116

uncheck the others).

The search applies to all cases of case (upper and lower case),
however, the case for replacing the expression will be exactly identical to what is entered in
the "Replace" field ("Remplacer").

Main

Overview of Menu bar and Toolbar:

The Menu bar:

– File : Open Project, Open recent project, Save Project, Save as, Export PLC
program in HTML format, Export Declaration Kinco Address Tag, Exit.

– View : choice of windows or tables to display, display of bars.
– The "Graph" option opens in the central window, a graph allowing to visualize
– on the Time (X) and Position (Y) axes, the speed curves of manual movements

launched from the "Axes" window (choose the Axis).

The option All PLC variables (="Toutes variables PLC") is another version of the
card's system settings table. It allows access to these parameters no longer from
their parameter number, but rather with their Modbus address.

– The interest is also to clearly identify their format (32 bit, 16 bit, signed or not, bit,
etc.), and to have sorting possibilities to find them.

– PLC Edit (List of definitions visible, Program Card visible, Export analyzed
program).

– "Carte programme Visible" (Visible Program Map): This feature gives a very
condensed overview of the general structure of your program. It uses your own visual
memory.
So you can go directly to a place whose structure you visually recognize.
Example: declaration of constants, declarations of variables, Select... case, loops,
etc...
The course on the program is done with the mouse wheel, or left click + up or down
on the visible program card.

– Tools: Firmware Update, Theme, Document Style, Reverse View, Settings File
Export.
The Firmware Update window also allows you to display information specific to your
card: serial number (CPUID), MAC address, Firmware version, etc...

– Window: selection of a window from the already existing tabs in the central window.

– Help / About

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

48 / 116

The Tools bar:

– Connection icon:
It is used to call up the window used to select and/or configure the type of connection to be
established with the card (Serial (USB or RS485) or Ethernet (TCP or UDP, +port)).

Common function icons:
New Project, Open Project, Save Current Project, Save As...

Display icons of different windows (if hidden, otherwise reminder):
Monitor Display, Motion Test Display, Inputs Display, Outputs Display, COILS Display, User
Registers Display, Saved Registers Display.

In the central window: display of the PLC Program, display of the table of constants, display
of the Table of parameters (settings) of the card, or display of the Recipe editor.

The Status bars :

– The upper bar states:
→ the type of connection established with the card (USB, TCP IP, etc.), as well as the
location of the current program file.

– The lower bar states:
→ the processor occupation rate in real time (% CPU available), as well as the card
availability rate.
→ if a program is running (PLC RUNNING/PLC STOPPED), with Start/Stop command
→ If the card ENABLE input is active (ENABLE/STOP)
→ Data exchanges with the card (packets sent (S:), packets received (R:), transmission
errors (Err:), and connection status (CONN: True or False).

Parameters_table
There are 2 ways to access the card settings.

Either from the Parameters icon:

Either from the Menu:
View -> Parameters InterpCNC
In this case the parameters have a number located between 20 and 1515.

Description of the most usefull parameters

https://www.helpndoc.com/feature-tour/markdown-import-export-using-helpndoc-help-authoring-tool/

ICNCStudio Help

49 / 116

Some of the most useful settings parameters include:

The initial frequency of Axes movements → parameters 20 to 25
Also called "Frequency Start", this parameter reduces the time required for the
acceleration phase (without increasing its speed) by not starting at frequency 0.
Please note, however, that some applications may not support certain settings (bottles on
conveyor, etc.)

Reversal of the direction of rotation → parameter 30
0: default direction. 1: reverse direction. 1 bit per axis.

Input Polarity → parameters 200, 201 and 202
These are 3 32 bit registers, mapping the operating state of each input (1 bit per input).
Value: 0 or 1.
This setting can, for example, allow you to use an input signal level opposite to that
provided in the program, without having to modify the existing program.
On 0 (normal mode) → a low level gives a reading of 0, a high level gives a reading of 1
On 1 → a high level gives a reading of 0, a low level gives a reading of 1

The configuration of Inputs 0 to 15 → registers 210 to 213:
See chapter DIN parameters of the card.

The configuration of Inputs 16 to 22 (the Fast Inputs) → registers 220 to 226
These 7 inputs are configurable as follows:
0: refresh on each line of the program.
1: refresh on each interrupt accessing this input.
2: counter mode
3: 2X encoder mode
4: 4X encoder mode

Analog input configuration
The gain: Setting to 1, therefore directly the resolution of the converter.
Default Value 20.07979 is an adjustment for input resistances.
The offset: allows you to set the Value 0 (because you can measure from -10V to +10V)
The scale of measurement:
- to 5 (default value), the measurement range extends from -10V to +10V
- at 4, the measurement range extends from -5V to +5V, which also improves accuracy.

Communication configuration (COM1 and COM2)
- Parameters 400 and 420 define the operating mode of COM1 and 2 ports:
0=disabled, 1=Slave, 2=Master, 3=DMX mode (see Basic interpreter manual)

- Parameters 401 to 404 and 421 to 424 are great classics for setting serial
communication ports (Baud rate, number of data bits, parity, stop bits)

- Parameters 405 and 425 define the card ID when configured as a slave (see parameters
400 and 420)

- Parameters 408 and 426 define the minimum delay in milliseconds between the sending
of 2 Modbus frames (some drives for example require at least 5 ms between 2 frames
received)

- Parameters 409 and 427 define the number of unsuccessful attempts before returning a

ICNCStudio Help

50 / 116

transmission error (visible in "All PLC Variables", Modbus RTU master error (or success)
registers.

State of outputs 0 to 31 at boot → Register 270.
This is a 32-bit register. This parameter is used to define (force) the state of the digital
outputs when the card is powered up (reminder: outputs 0 to 15 are physical outputs,
outputs 16 to 31 are virtual outputs (for example for a module external)).

The state of the analog outputs (AOUT0 and AOUT1) on loss of the ENable →
Registers 330 and 331.
These outputs will be forced to the voltages corresponding to these Values, when the link of
the ENA is interrupted (case of emergency stop).

The "PLC Basic AutoRUN" parameter → Parameter 510
Value: 0 or 1.
If set to 1, the PLCBasic program present in the card's EEprom will run automatically on
power-up.

Network Configuration settings → Settings 520 to 544
Here you can give a Netbios name to the card on your network, choose the DHCP mode
(to 1), or define the IP address of your card, subnet mask, gateway, port, etc...

Recipes

Theory of recipes

The creation of recipes allows you to plan for your program, different "sets" of parameters
that can be used according to the type of production to be carried out (variants).
Example: parameters for labeling objects of different sizes, parameters for applying labels
of different sizes, etc...

The Recipe Editor (="Editeur Recettes")allows you to assign for each register:
→ a name, a type, a Value, a comment.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

ICNCStudio Help

51 / 116

How to use

First of all, you need to define the number of parameters you will need for your recipes. NB:
Each parameter occupies by default one 16-bit register (U16).
For each register, you must specify its type (U16, U32, I16, I32, FLOAT).
In the case of a 32-bit register (DWORD or FLOAT), the following 16-bit register will be
automatically reserved, and its Value field will then become non-editable since the 32-bit
Value will appear on the previous line.

The memory area dedicated to recipe storage (EEprom) is a single space of 16 KB (i.e.
8192 16-bit registers).
The size of a recipe is limited to 1000 registers.
You can therefore, for example, manage more than 40 recipes of 200 registers (8192 /200

ICNCStudio Help

52 / 116

= 20+) or even more than 100 recipes of 80 registers (8192 / 80 = 100+).
You have 4 pages (0 to 3) allowing you to work on 4 recipes simultaneously.
For each page, you have an Index ("Numéro recette") allowing you to select the active
recipe.

How it works:

Read :
Depending on the recipe number entered in the Index of a page, the system will
transparently address/display the block of data corresponding to the recipe at the start
addresses of the page: 10000, 11000, 12000 or 13000.
Thus, your registers (we advise you by convention to name them RCP_...) will take different
Values in turn, just by changing the Value of the Index.

Write :The Values written at these first addresses will (always transparently) be effectively
stored in the memory area pointed to by the Index ("Numéro recette"=recipe number).

Advantage with an HMI :
From a screen dedicated to entering recipe parameters, your enterable fields are always
read and written to the same Modbus addresses, and by changing only the Value of the
Index they will actually be stored in/read from the memory area assigned to the recipe
number.

PLC_variables

On the View tab -> All PLC variables (="Toutes variables PLC")
This page allows you to access and visualize in real time all the system registers, in the
form of a table and with search and sorting possibilities.
It is possible to display these logs or not, depending on their type and access method
(check):
Input Registers (read-only), Input Bits (read-only bits)
Holding Registers (read/write), and Coils (bits read/write).

It can also be convenient to open "All PLC variables" several times (= several instances), in
order to access registers separately according to their type.

For a search, you can enter a name, a keyword, an address, a Value, a format, etc... You
can also refine by limiting the search to a type of register and/or a column.

You can of course enter Values directly in the Holding Registers and Coils, from the table
(Value column).

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

53 / 116

The main interest is therefore to be able to access the content of system bits and registers
as easily as possible, in order for example to test the proper functioning of your Basic
program, and its development.

(Without this, it would be necessary to stop the running program and launch a Print from the
command line, having first searched for the address of the register in question...)

Custom_Data

To debug a PLC program under development, ICNCStudio offers a tool allowing you to
make an "à la carte" selection of registers, bits (Coils, Inputs, or Outputs), PLC variables
and program variables whose evolution you wish to follow running.

This is the list of Custom Data.

This is available from the View tab -> Custom data, or from the icon

The Custom Data window will appear by default at the bottom-left of the screen, but can be
dragged and dropped to any other area as desired.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

ICNCStudio Help

54 / 116

The Custom Data window has 9 separate pages (1 to 9), which can be made up of
registers, bits and variables inserted as you wish.
This is possible from the User Registers, Saved Registers, DIN, DOUT, COIL, Recipe
Editor, and All PLC Variables windows.

The advantage of having different pages can be for example to have distinct lists of
registers, bits, and variables, according to the current PLC cycle, according to the current
operating mode, according to the function (Ethernet, Modbus, etc. ...)

Each of these 9 pages can be renamed (right click on the tab -> Rename Tab).

The list of these data is composed in the order of additions. However, it is possible to
change this order: right click, then
-> Delete
-> Push up
-> Push down
-> Push to start
-> Push to end

Adding a register, bit, or variable to one of the 9 pages is done by: right click -> Add to
custom data -> Page x
from the relevant register line, bit or PLC variable.

The values of these registers, bits and variables can be changed in real time directly from
the Custom Data window.
For Coils and DOUT outputs, the boolean value can be changed directly by double-clicking

ICNCStudio Help

55 / 116

on the line concerned, in the Custom Data window page.

Charts

This window ("Graphique"=chart) allows you to monitor, on a time scale, the evolution of up
to 4 values, which can be:

- Current position of one or more Axes, or speed, or target position

- State of digital inputs or outputs (Boolean)

The choice can be made using the preselections in the drop-down menus, or by selecting
"Custom" which allows you to monitor the contents of a register, specifying its address, its
Type, and its Format
Example: Address 3010 (Ram), Holding Register, U16

The refresh delay is adjustable in milliseconds. Set to 200ms here:

The axes will always appear on the same graph. The scale is self-adjusting over time.

The Booleans will always appear on a different graph than the axes, for a question of scale.

https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/

ICNCStudio Help

56 / 116

Analog_Counters

This window allows instant reading of the 4 analog inputs,
as well as manual adjustment of the voltage of the 2 analog outputs (via slider, or by
entering the desired value).

It also allows reading of quick entries, for:
- the positions of the 3 encoders
- counter values

Firmware_update

Firmware update of the InterpCNC V3 board

Definition

Firmware is the board's embedded system software. It allows the correct operation of all its
components, between them and in their optimal implementation. He is also responsible for
all the functionalities offered by the card.

It is advisable to update the firmware whenever a new version is available.
This allows your applications to benefit from the latest fixes or performance improvements,
as well as any new features developed.

https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

ICNCStudio Help

57 / 116

NB: if you have used the InterpCNC board for a project that is not likely to evolve and is
already working perfectly as is, an update is not recommended.

Firmware update is on demand:
→ Tools Tab / Firmware Update

Note: Prior to dectect if a new firmware version is available, ICNCStudio must be up to
date.

Of course, ICNCStudio must first be connected to the card.
The Firmware update window informs you of the current version.
The selection of the version is done just below (button [..] to browse).
The [Release Notes] button allows you to view the release notes of the selected and
previous versions.

Update procedure

Warning: Never interrupt the +24V power supply to the card, nor unplug its
network or USB connection during an update
(Despite the software security in place, there could still be a risk of incomplete
programming, which would have the effect of rendering the card non-functional, and would
then require it to be returned to the workshop for repairs)

Once the version is selected, click on [Submit]:
→ the procedure starts (progress bars) and the new firmware is transferred to the board.
Then click on [Reboot and Update]
→ the firmware is installed (see progress on the card display).
At 100%, the update is complete and the board is operational.

ICNCStudio_update

ICNCStudio Update

ICNCStudio has an automatic online update system.
Periodically, when starting the application, the version of ICNCStudio installed compares
its version number with the latest available, and will inform you if an update is available.
You can choose whether or not to install it. If so, the update will then be downloaded and
installed automatically (follow the instructions on the screen).

You can also self-initiate an update search:
→ Tools tab: ICNC Studio update

The version in use can be viewed in the Help/About ICNCStudio tab.

Encryption

Beyond password protection, and always in order to protect your PLC Basic program
against counterfeiting, ICNCStudio also includes an encryption system.

Thus an advanced user who could have obtained the source file of your PLC program, if
you have encrypted it, will not be able to see its content in ICNCSudio, or even recognize

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/create-chm-help-files/

ICNCStudio Help

58 / 116

portions of code with a text editor.

If you open an encrypted program, this input window appears:

If you cancel password entry, the program is loaded, but the text editor appears as follows:

Cliking on the yellow/red icon displays the decryption password entry window:

Clicking "Decrypt" (="Décrypter") will bring back the initial password entry window.
The content of the program then becomes fully accessible:

ICNCStudio Help

59 / 116

Clicking on the icon that has become gray, encrypts the unencrypted project:

-> Check "Encrypt the project" (="Crypter le projet"), choose and confirm the password,
then Validate.
You can then still view the program you encrypted, but if you save it it will be in encrypted
form:

If you click again on the yellow/red icon,
the "Reset" (="Réinitialiser") button allows you to change the current password:

Parameters

This chapter describes the different configuration screens accessible from the parameters
icon.

Unlike the table accessible from View -> InterpCNC Parameters (Paramètres
InterpCNC) only the main parameters are offered,
 but the readability and selection of settings is facilitated by drop-down menus, input fields
and "check boxes".

https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

ICNCStudio Help

60 / 116

General_configuration

The locking function
Protects your embedded PLC Basic program against reading and/or overwriting by

setting a password.
Thus, it is impossible to clone the machine for which you have designed the PLC program,
or even users who are too curious to delete it inadvertently.
Lecture Protégée (Read protect): The program cannot be read, neither from the Ram,
nor from the Eprom.
Écriture protégée (Write protect): A program can be sent in Ram and be executed
(Run), but cannot be written in the Eprom (overwriting of the program already in place is
therefore not authorized).
For more details, see the explanations in the Configurations chapter.

The « PLC program AutoRUN » parameter
Value : 0 or 1.
If set to 1, the PLCBasic program present in the card's EEprom will run

automatically on power-up.

Real Time Clock (= RTC) "Horloge temps réel"
The InterpCNC V3 board does not have a battery or internal battery, it can set the

time automatically (on power-up, or on command), by connecting to an SNTP server.
Note: SNTP = "Simple Network Time Protocol"
In this case activate "Synchro on SNTP server"). Your time zone and "Automatic
summer/winter time" are the parameters used to adjust the time setting to your
geographical position.

Rotation 180°
Allows easier reading of the LCD screen depending on the mounting direction of

the card on a DIN rail.

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

61 / 116

Sortie PUL/DIR en TTL (PUL/DIR as TTL outputs)
Allows the PLC, when the axis commands are not used, to use the pulse and

direction outputs as 0-5V discrete outputs, which will be remapped as outputs n° 16 to 27.

Axes

The initial frequency of Axes movements (Fréquence initiale des mouvements)

Also called "Frequency Start", this parameter reduces the time required for the
acceleration phase (without increasing its speed) by not starting at frequency 0.

Please note, however, that some applications may not support certain settings
(bottles on conveyor belt, etc.)

 Limit switch (Fin de course)

This involves declaring here the input used for each limit switch, according to the
direction of the axis, as well as its polarity.

The type of action on the limit switch can be the rapid stop of the axis (taking into
account the Value of the Rapid Deceleration field) or its immediate stop.

This stop can also relate to all axes.

DIN

Configuration of standard inputs 0 to 15

– Input Polarity

This setting can, for example, allow you to use an input signal level opposite to that

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour

ICNCStudio Help

62 / 116

provided in the program, without having to modify the existing program.
On 0 (normal mode) → a low level gives a reading of 0, a high level gives a reading of 1
On 1 → a high level gives a reading of 0, a low level gives a reading of 1

– Debounce filter setting for each input (time in ms)

1) Filter delay →
4 setting values are possible, i.e. 2 bits per input.
00: 0 ms delay → Filter off
01: 10ms delay
10: 30ms delay
11: 100ms delay
Thus any edge variation during this delay will be ignored.
2) Filter mode
These settings are based on the debounce time selected above.

3 Setting Values are possible, i.e. 2 bits per input:

00: No filter. This mode only reports state changes whose duration is greater than X ms (as
defined by the debounce).
01: Low Pass Filter. This mode only reports state changes that last longer than:
(time missing to go to X ms + bounce duration).
10 or 11: This mode samples every X ms (as defined by the debounce), and reports the
state detected at that instant.

Configuration of Inputs 16 to 22 (the Fast Inputs)

ICNCStudio Help

63 / 116

These 7 inputs are configurable as follows:
0: refresh on each line of the program (Standard).
1: refresh on each interrupt accessing this input.
2: counter mode
3: 2X encoder mode
4: 4X encoder mode

The polarity of each of these inputs can also be reversed here.

Ditto for virtual inputs, which can be:
- or analog inputs used as discrete inputs and remapped as inputs numbered from 23 to
26
- either entries

https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/

ICNCStudio Help

64 / 116

AIN

– Analog input configuration
The gain: Setting to 1, therefore directly the resolution of the converter.
The default 4.885198 is an adjustment for input resistances.
The offset: allows you to set the value 0 (because you can measure from 0V to +10V).
The measurement scale ("Plage de mesure"):
- to 5 (default value), the measurement range extends from 0V to +10V
- at 4, the measurement range extends from 0V to +5V, which also improves accuracy.

IN_ENA

In the Parameters menu, the ENABLE/DISABLE input configuration page gives
access to configuration of the state of outputs 0 to 31,
which will be forced according to the physical state (0 or 1) of the ENA (Enable) input.

So you can force the state for selected outputs to 0 or 1, accordind to the actual ENAble
input state (0 or 1).

NB: Just avoid contradictory selections (activate and deactivate at the same time for the
same state, which are not managed).

– State of outputs 0 to 31 at boot (Register 270) "Etat des sorties au boot"
This is a 32-bit register. This parameter is used to define (force) the state of the digital
outputs when the card is powered up
 (reminder: outputs 0 to 15 are physical outputs, outputs 16 to 31 are virtual outputs (e.g.
for an external module)).

https://www.helpndoc.com/create-epub-ebooks

ICNCStudio Help

65 / 116

– The state of the analog outputs (AOUT0 and AOUT1) on loss of the ENable
(Registers 330 and 331).

These outputs will be forced to the voltages corresponding to these Values, when the
link of the ENA is interrupted (case of emergency stop).

ICNCStudio Help

66 / 116

Serial_port

Communication configuration (COM1 and COM2)
- These parameters (400 and 420) define the operating mode of the COM1 and 2 ports:
0=disabled, 1=Slave, 2=Master, 3=DMX mode (Slave for COM1, Master for COM2). See
also the Basic Interpreter manual.

- The Communication settings (401 to 404 and 421 to 424) are great classics for setting
serial communication ports (Baud rate, number of data bits, parity, stop bits)

- The Slave ID parameters (405 and 425) define the card ID when configured as a slave
(see parameters 400 and 420)

- The Inter frame delay parameters (408 and 426) define the minimum delay in
milliseconds between the sending of 2 Modbus frames (some drives for example require at
least 5 ms between 2 received frames)

- The Max retry parameters (409 and 427) define the number of unsuccessful attempts
before returning a transmission error (visible in "All PLC Variables" -> Modbus RTU master
error (or success) registers).

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

67 / 116

Polling

The InterpCNC card as master, can communicate via Modbus with other peripherals
(drives, HMI, PLC, ...) by sending read or write requests to a slave peripheral.

Polling, also called mapping (or mapping in French) consists of creating a self-
updating copy of a data zone, to another data zone.

Thus, for example, bits or registers can be written locally, and these Values will be
automatically sent every X ms to update the target registers of the slave device.
The same in reading: bits and registers of the slave can be periodically copied every X ms
to registers or local bits of the master.

To do this, specify the COM port to which the slave is connected, as well as its Modbus ID
and the desired frame refresh rate (in ms).
The Action can relate to the reading or writing of bits or registers, located on the slave at
the address of the Data address on slave field, for the Number of successive data,
and will be mapped locally on the master (the card InterpCNC) from the address of the
Local data address field.

Ethernet

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/

ICNCStudio Help

68 / 116

– Network Configuration parameters (Parameters 520 to 544)

Here you can give a Netbios name to the card on your network, choose the DHCP mode
(to 1), or define the IP address of your card, subnet mask, gateway, port, etc...

Digital_control

These parameters relate to the advanced configuration of pulse and direction signals in
digital control mode, for each of the axes.

The GALAAD software will modify some of them with the settings that will be made.

The user is advised not to modify these values.

Plasma_thc

The IntercpCNC V3 card has been made compatible with GALAAD
(https://www.galaad.net), as a plasma cutting and machining software.

https://www.helpndoc.com/news-and-articles/2022-09-27-why-use-a-help-authoring-tool-instead-of-microsoft-word-to-produce-high-quality-documentation/
https://www.helpndoc.com/news-and-articles/2022-09-27-why-use-a-help-authoring-tool-instead-of-microsoft-word-to-produce-high-quality-documentation/
https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com

ICNCStudio Help

69 / 116

The torch is normally mounted on the Z axis. THC stands for: Torch Heigth Control.
THC is a system handled by the firmware to manage optimal postionning of the Z axis
during plasma cutting, according to speed and arc voltage.

"Délai entre activation THC et début d'opération" is a duration in ms to delay activation
of THC.

Plasma inverters generally have an internal divider so that arc voltage can be measured by
an analog input of the InterpCNC card. So some inverters have an output which varies from
 0V to 10V, or 0V to 5V, or 1V to 4V, or other, according to brands or model.

Of course, arc voltage mesurement is more accurate over the full 0V to 10V range.
This is what the optional SOPROLEC THC amplifier/isolator module is made for. Please
contact us if you need to purchase one.

"Source mesure tension" defines which Analog input of the card will be used for arc
voltage mesurement.
Then both "Tension ARC réelle..." parameters will inform of the inverter output range, or
these need to be set to 0 and 10000 mV if you have the SOPROLEC THC module.

"Montée axe Z max" and "Descente axe Z max" will respectively define max ascent and
max descent in mm for the torch, depending on material thickness.

THC needs to be deactivated when cutting speed is too slow (in curves for instance), and

ICNCStudio Help

70 / 116

reactivated when speed retrieves.
"Seuil vitesse engagement effectif THC" defines the % of the cutting speed to
reactivate THC.
"Seuil désengagement THC" defines the % of the cutting speed to deactivate THC.

"Zone morte de régulation" is a deadzone in mV, set to ignore unwanted voltage
fluctuation observed on the Analog input dedicated to arc voltage mesurement.

Note: This settings are written to by the GALAAD software. Please read the THC section
of the GALAAD manual for complete information.

Release_note
ICNCStudio Version: 1.0.0.87
Fixes:
· Fixed a bug on the "Analog, Counters" settings: modifications to the Encoder 2 and

Encoder 3 fields were not taken into account
· Search and Replace function was no longer functional

Custom Data functionality:
· Fix on an unwanted color change when changing the state of Coils
· Authorization to write a Holding Register from the Custom Data table
· The text **Modified** no longer appears in the header of ICNCStudio after loading a

PLC program

Developments:
Custom Data feature:

· When opening the Custom data window, automatic positioning at the bottom left
· Changing borders + aligning controls
· Added a Toggle ("Change state") button for outputs and coils
· Adding forcing of inputs ("Forcing to 1" button, and "Add forcing" button)

Search and Replace functionality:
· Redefinition and application of a new mode of operation

ICNCStudio Version: 1.0.0.86
Fixes:
· Resetting the position of the “search” tab following the start of ICNCstudio.
· Changed the layout of card protection settings.
· Eliminated text editor flashing after selecting a word in the "search" tab (if not

necessary).
· Eliminated text editor blinking following selection of a sub-function or function in the tree

(if not necessary).
· General improvement to how the custom chart works.
· Fixed bug detecting the version of the loaded project in ICNCstudio.
· Fixed the error displaying the encoder number in the "analog and counters" tab.
· Display of the encoder number following a change in the fast input parameters.
· Changed maximum filter values on analog inputs.
· Fixed the bug related to constantly changing the size of the user register array and

saving registers.

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/

ICNCStudio Help

71 / 116

· Correction when sending an Encoder parameter to the card (from the parameters
table)

· Fix on reading registers U16 and I16 in custom graph display.

Developments:
· Added functions and commands for autocompletion in the text editor.
· Ability to reset a project password using a unique code for each project.
· Navigation in the search table using the arrows.
· Added Custom Data functionality, for debugging.

ICNC Studio Version: 1.0.0.85

Fixes:
· Bug when opening the search window in the PLC editor and searching for special

characters.

Evolutions:
· Scroll disabled for recipe selection.

ICNC Studio Version: 1.0.0.84
Fixes:
· The cursor remains visible in the basic editor.
· Changed the display of the project name.
· Copy/Paste variable names from different tables without retrieving the whole row of the

table.
· The size of the column of values in the tables of user registers and saved registers is

stable, which means that a constant change in size with each new value is eliminated.

Evolutions:
· The table cells turn gray when the card is disconnected.
· To open the project, you can simply drag and drop the file into the text editor.
· Added new parameters for card locking (read/write protection of saved PLC program).
· Added new settings for the Linky interface.
· Continuous numbering of program lines between the different blocks.
· Checking for conflicts of identical variable names in different tables.
· Checking for conflicts of identical names of constants in the basic editor before sending

the program to the board.
· Optimized error messages, added HTML text that links to the error block and line.
· New contextual help system for the basic editor (search for commands) and for the

different sections of ICNCStudio by pressing the F1 key on the element or the text
sought.

· Added encryption/decryption of projects.
· Detection of functions and subroutines (sub) in the tree structure.
· New search window in all blocks by pressing (Control + F) on the Basic editor or on the

various tables.

ICNC Studio Version: 1.0.0.83
· Added block system.
· Addition of table of constants.

https://www.helpndoc.com/feature-tour

ICNCStudio Help

72 / 116

InterpCNC V3 manual

SOPROLEC
ZAC DE L'EPINE
72460 SAVIGNE L'EVEQUE
FRANCE
Tél : +33 (0)2 4376 4476

SOPROLEC
InterpCNC V3

Axes card

ICNCStudio Help

73 / 116

Setup Manual

Presentation
The InterpCNC V3 card is a PLC card mainly intended for axis control.
It has 6 axes command outputs that can be interpolated or independent.

Developed on the basis of a powerful 32-bit 480 mHz processor, the InterpCNC V3 also
offers ideal performance for digital control (CNC) applications and also automation
applications requiring high-performance axis control/command.

It has the advantage of providing maximum power, connectivity, and functionality, in a very
compact case, and directly fixable on a DIN rail.

In addition, the InterpCNC has a powerful Basic language interpreter allowing standalone
automation management. (See our PLCBasic Interpreter documentation).

Your project consists on the one hand of a Basic program, but also of the registers and

https://www.helpndoc.com/feature-tour/advanced-project-analyzer/
https://www.helpndoc.com/feature-tour/advanced-project-analyzer/

ICNCStudio Help

74 / 116

bits, inputs and outputs, which you will have declared and named in each of the tables.
It is also made up of the recipes that you may have defined in the recipe editor.
The set will be saved in a single file with the extension ".plc"

The axis control interface in Step/Direction mode is compatible with the entire range of
motorizations offered by the SOPROLEC company (stepper motorization, brushless
motorization).

Three communication interfaces are available:
USB: Virtual Com port (Modbus RTU protocol), for fast communication in CNC
applications
Serial: 2 RS485 ports (COM1 and COM2, Modbus RTU protocol) for industrial
applications
Ethernet: Modbus TCP or Modbus UDP protocol.

The COM1 port is also compatible with the DMX512 protocol, widely used in the
entertainment world for controlling equipment (see Basic Interpreter Manual).

A mini OLED screen allows you to view the status (0 or 1) of the first 32 inputs and the first
32 outputs of the card in real time, as well as various information (Firmware version on
power-up, status of the ENable entry, board IP address, etc.)

Overview of the InterpCNC V3 board

ICNCStudio Help

75 / 116

Power :
24VDC/300mA power supply required by the card

Outputs specs :
Outputs 0 to 15: Opto-Isolated Outputs, 500mA max per output.

Caution: Do not consume 500mA on multiple outputs at the same time.
These outputs must be supplied externally on VOut+ and Vout-, voltage < 32V.
Outputs 16 to 96: Virtual outputs, require one or more output expanders via Modbus
communication (Example: Kinco KS123). See implementation on page 28.
Outputs PUL1 to PUL6, and DIR1 to DIR6: TTL output 5V/40mA max

Inputs specs :
Digital inputs IN0 to IN15 are Opto-Isolated. They meet the IEC 61131-2 standard and are
type 3, i.e. the minimum current and voltage required to switch them to the high state are
respectively between 2.27/2.45 mA, and 7.44/7.98 V for voltage.

NB: Inputs IN0 to IN15 can be filtered, i.e. an anti-bounce filter can be applied to them (4
possible delays in ms, and 3 filtering modes):
Example: case of a dry contactor (button or relay) which could generate rapid pulses by not
establishing a frank and clean contact.

ICNCStudio Help

76 / 116

See Board Parameters table for settings (Parameters 210 to 213).

Inputs IN0 to IN15 : 0 to 24V
The COMI0 or COMI1 commons must be connected to 0V (PNP inputs) or +24V (NPN
inputs).

Inputs IN16 to IN22 : TTL type fast counter inputs
These inputs are said to be fast, because they correspond to physical inputs directly
managed by the micro-controller (unlike opto-isolated inputs 0 to 15 which are managed by
a component using the SPI bus).
COMI3 must be connected to 0V (PNP) or +24V (NPN).
The IN21 input can be configured as an incremental encoder input (2X or 4X).

Inputs IN23 to IN255: Virtual inputs, require one or more input expander via Modbus
communication (Example: Kinco KS123).

ENABLE input: Emergency stop function. 0 to 32V max. High level from 3.5V.

Analog Inputs/Outputs:
4 analog inputs AIN0 to AIN3: -10V to +10V.
The resolution is 16 bits (Values read from -32767 to +32767).
-32768: -10V
0: 0V
32767: +10V
NB: parameters 300 to 311 are used to calibrate the Values received on these 4

analog inputs. See parameter table.

2 Analog Outputs AOUT0 and AOUT1: 0 to 10V. 11-bit resolution (from 0 to 2047).
0: 0V
2047: +10V

Setup

Installation under Windows 7, 8, 10 and 11 does not require any particular driver.
In USB, the card is automatically recognized in Plug and Play as a "USB Serial
Device" (Virtual COM Port).
In Ethernet, the connection is a classic network connection knowing that the card has its
own IP address (re-definable), and that port 502 is generally used in TCP, or 500 in UDP.

It will be necessary to make sure that the firewall of your computer does not block the
connection with the card, so that the ICNCStudio software can detect it and connect to it.
If you connect the InterpCNC card to your network (via a router or switch), make sure that its
IP address is on the same network as the PC on which ICNCStudio will be used (= same
beginning of IP address, Example: 192.168 .10.xx)

Regardless of the type of interface used, all data exchanges remain based on the Modbus
protocol. The card can then be configured either as Master or Slave (see table of
parameters).
As a general rule, the HMI always occupies the master position, and the InterpCNC board
the slave position.

For simplified implementation: all the connectors are removable and for the orange
connectors, the connection of the wires is of the quick type (use a small flat screwdriver to
release each central pressure spring, both on insertion and on removal).

https://www.helpndoc.com/feature-tour/iphone-website-generation

ICNCStudio Help

77 / 116

Wiring
Power supply, Emergency stop

The connection between +24V and ENA is essential. Therefore, use an NC (normally
closed) type contact to ensure this connection.
For safety, an open contact on this link will deactivate the axis command outputs, and will
leave outputs OUT0 to 15 as they are, until the next time the emergency stop button is
pressed (acknowledgment and recovery).

Connection of inputs
The physical inputs of the card can be configured either in PNP or in NPN.
A different configuration is possible on each group of inputs associated with a COMI.
Wiring examples:

https://www.helpauthoringsoftware.com/articles/what-is-a-help-authoring-tool/

ICNCStudio Help

78 / 116

Connection of outputs
The static outputs must be powered externally (connect +24V to VOUT+, and 0V to

VOUT-). They are of the PNP type.
Wiring example:

The same for outputs 8 to 15.
NB: the +VOUT and -VOUT are connected internally on the card. You can therefore supply
only one side (unless the cumulative intensity of the outputs turns out to be high, you will
thus increase the caliber).

Motor driver control

The pulses/direction commands of the card are to be linked directly to the corresponding
inputs of the driver.

ICNCStudio Help

79 / 116

MODBUS_documentation

SOPROLEC
ZAC DE L'EPINE
72460 SAVIGNE L'EVEQUE
FRANCE
Tél : +33 (0)2 4376 4476

SOPROLEC
InterpCNC V3

Axes card

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

80 / 116

MODBUS communication manual

Introduction

This documentation is intended for advanced programming of the InterpCNC 3 card.

It informs you of a certain number of registers and system bits, as well as their type of
addressing.
Thus it becomes possible by reading them, by testing them, to carry out for example your
own functions allowing what the already existing functions of the Basic PLC would not have
already envisaged for you.

The Modbus commands described allow the card to be controlled without an embedded
Basic PLC program.
Indeed, the InterpCNC 3 card is also capable of executing the Modbus commands coming
by Example from an external PLC.

https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/

ICNCStudio Help

81 / 116

The card receives in its buffer the Modbus frames intended for its ID, and executes them.

The RS485 COM1 and COM2 links use the Modbus RTU protocol. These 2 serial ports
must be configured in Slave or Master mode for extension management.
The USB link also uses the ModbusRTU protocol with serial port emulation (CDC).
The Ethernet link also uses the Modbus IP protocol in TCP or in UDP.
In server mode, a maximum of 6 clients is allowed.

Identification of InterpCNC PLCs connected to the Ethernet network

The PLC responds to a UDP broadcast type request on port 58080. This default port can
be changed via parameter 544.
The broadcast request must contain the following 3 character string: "0 1"
The response from the PLCs will be a string containing the following information:
IP address, TCP port, MAC address, Netbios name,
The response format is as follows: "IP=%s:%d;MAC=%02X:%02X:%02X:%02X:%02X:%
02X;NAME=%s"
Example of response :

«IP=192.168.10.147:502;MAC=2E:52:B9:1A:03:31;NAME=ICNC3-1A0331»

Identification of InterpCNC PLCs connected via USB

Attached cards will be seen as a standard serial port. You can identify the InterpCNCs by
the PID and VID information which is as follows:
ICNCVID = "0483" et ICNCPID = "5740"

The following Code example in C# is used to list the serial ports (partial code)
// Search all CDC COM adapter in registry
private void GetCOMPortList(List<ConnexionInfo> USBCOMlist)
{
 try
 {

ManagementObjectSearcher searcher =
new ManagementObjectSearcher("root\\CIMV2",
"SELECT * FROM Win32_PnPEntity WHERE Name LIKE '%(COM[0-9]%'");

// "SELECT * FROM Win32_PnPEntity");

try
{

foreach (ManagementObject queryObj in searcher.Get())
{

if (queryObj["Caption"].ToString().Contains("(COM"))
{

//List<string> DevInfo = new List<string>();

string Caption = queryObj["Caption"].ToString();
int CaptionIndex = Caption.IndexOf("(COM");
string CaptionInfo = Caption.Substring(CaptionIndex +

1).TrimEnd(')');
string deviceId = queryObj["deviceid"].ToString(); //"DeviceID"

int vidIndex = deviceId.IndexOf("VID_");
int pidIndex = deviceId.IndexOf("PID_");
string vid = string.Empty, pid = String.Empty;

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/

ICNCStudio Help

82 / 116

if (vidIndex != -1 && pidIndex != -1)
{

string startingAtVid = deviceId.Substring(vidIndex + 4);

vid = startingAtVid.Substring(0, 4); // vid is four characters
long

string startingAtPid = deviceId.Substring(pidIndex + 4);

pid = startingAtPid.Substring(0, 4); // pid is four characters
long

}

ConnexionInfo DevInfo = new ConnexionInfo();
if ((vid == "0483") && (pid == "5740"))

DevInfo.TypeConnexion = ePortType.TYPE_SERIAL_INTERPCNC;
else

DevInfo.TypeConnexion = ePortType.TYPE_SERIAL;

DevInfo.COMPort = CaptionInfo; // Add(CaptionInfo);
DevInfo.VID = vid;
DevInfo.PID = pid;

USBCOMlist.Add(DevInfo);
mHandlerFormFunctionForAddItem?.Invoke(DevInfo);

}

}
}
catch (NullReferenceException ex)
{

}
 }
 catch (ManagementException ex)
 {

 }
}

Read/Write Parameters

Access to the saved parameters of the InterpCNC card can be done using the ICNCStudio
utility, but also in Modbus:

The parameter table is accessible in Read/Write (Holding registers) from address 32000.
All parameters are in 32-bit format (2 registers per parameter).

Adresses of Input Bits (Read only)

- 1X type variables -

The registers represent the state of the discrete inputs of the InterpCNC card as well as the
status bits.
All of this information is also available as 16-bit words in read-only registers.
In the PLC program, these variables are accessible with the commands:

https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/
https://www.helpndoc.com/create-epub-ebooks

ICNCStudio Help

83 / 116

• IN(0..255), DFM(0..255), DFD(0..255) for the inputs
• STSBit(256..399) for the status bits

0 to 255 digital inputs
Also available as Input register 1000 to 1015

256 to 263 Movement bits in progress, 1 bit per axis,
Also accessible in Input register 1016 / 8 least significant bits

264 to 271Movement direction (bit at 0 if negative movement, at 1 if positive movement)
Also accessible in Input register 1016 / 8 most significant bits

272 to 279 Current homing sequence
Also accessible in Input register 1017 / 8 least significant bits

280 to 287 Error during homing sequence
Also accessible in Input register 1017 / 8 most significant bits

288 to 295 Limit switch negative direction active
Also accessible in Input register 1018 / 8 least significant bits

296 to 303 Positive direction limit switches active
Also accessible in Input register 1018 / 8 most significant bits

304 to 311 Reserved
Also accessible in Input register 1019 / 8 least significant bits

312 to 319 Reserved
Also accessible in Input register 1019 / 8 most significant bits

320 to 327

COM Status
Also accessible in Input register 1020 / 8 least significant bits
320 One or more saved registers (EEDATA) modified outside the PLC program.
Cleared on call to IsEEdataChanged
321 recipe Changed. Set to 1 when there is a change in the recipes by communication
channel or manipulation by the RCP functions. To be tested with PLC command
IsRCPChanged. Reset to 0 when calling IsRCPChanged
322 InterpCNC parameter changed outside the PLC. Cleared on call to IsPrmChanged
323 USB input in communication with the Grbl protocol and no longer Modbus RTU.
Automatic switching to the Grbl protocol on receipt of a frame of length <=4 characters
and starting with '$' or Ctrl-X (chr(0x18))
324 : DMX Slave Frame received (automatically goes to 0 after reading the bit by
stsBit(324)
325 : The DMX master sends frames to the controller
327 : A Linky frame has been received. Goes to 0 after reading the bit with the PLC
command stsBit(STS_LINKY_RECEIVED)

328 to 335

Miscellaneous Status 1,
Also accessible in Input register 1020 / 8 most significant bits
328 Enable input state
329 Card locked (same as 328)
333 Override CNC machining speed <> 100 %

336 to 343 Miscellaneous Status 2,
Also accessible in Input register 1021 / 8 least significant bits

344 to 351
Status PLC Basic
Also accessible in Input register 1021 / 8 most significant bits
346 PLCBasic running

352 to 359

Network Status
Also accessible in Input register 1022 / 8 least significant bits
352 Ethernet cable connected
354 IP Address allocated

355 Connexion IOT effective
356 RTC initialized by the SNTP server

ICNCStudio Help

84 / 116

357 Connection to SNTP server ntp.pool.org active
358 Completed SMTP connection setup

360 to 367 Current probe axis 1 to 8
Also accessible in Input register 1022 / 8 most significant bits

368 to 375 Probe Error Axes 1 to 8
Also accessible in Input register 1023 / 8 least significant bits

376 to 383 Reserved 3
384 to 391 Reserved 4
392 to 399 Reserved 5

Adresses of Input registers (Read only)

- 3X type variables -

These registers represent the internal variables of the InterpCNC.

NB: They can be read in PLC Basic with the same commands as for Holding registers,
provided you add 100000 to the register address:

GetMW(1xxxxx), GetMDW(1xxxxx), GetMI(1xxxxx), GetMDI(1xxxxx), GetMF(1xxxxx).
Examples :

• GetMW(101000) to read state of IN0 to IN15 inputs
• GetMDW(101330) to read the result of probing on axis 1

1000 to 1015 Mapping of inputs IN0 to IN255

1016 to 1025

Status Bit Mapping
1016 Least significant: Axis bits in motion
1016 Most significant: Movement direction bit in progress (0 if negative, 1 if
positive)

1017 Least significant: Homing bits in progress
1017 High: Bits Homing Errors

1018 Least significant: Negative limit bits active
1018 Least significant: Positive limit bits active.

1019: Reserve

1020: Miscellaneous status (see details on bits 320 to 335)

1021: Miscellaneous status (see details on bits 336 to 351)

1022 Least significant: Ethernet network status (see details on bits 352 to 359)
1022 Least Significant: Axis Flags in Probe Sequence

1023 Least significant: Probe sequence error flags

'1026 Number of characters in Print PLC Basic buffer (command ? Or print)
'1027 Number of characters in Trace PLC Basic buffer (command!)

1030 to 1041 Position counters of axes AXE1 to AXE 6 in pulses (signed 32-bit registers also
available in Holding register 2400 to 2411)

1042 to 1053 Current axes movement speeds (32 bits signed)

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

85 / 116

1060 to 1071 Target current position (Last requested target position)
1072 to 1083 Current target speed (Last requested target speed)
1090 to 1097 Analog input AIN0 to AIN7
1100 CPU Load
1101 CPU Load for PLC
1102 to 1107 CPU ID Processor (96 bits)
1108 to 1111 NOR FLASH UID (64 bits)
1112 to 1114 Ethernet MAC address
1115 Firmware version High
1116 Firmware Version Low
1117 Bootloader Version High
1118 Bootloader version Low
1120 NOR FLASH Page size
1121 NOR FLASH Sector Size size
1122 NOR FLASH Bloc Size
1123 NOR FLASH Bloc Count
1124 NOR FLASH Total size Kbyte

1130

Period in µs between two events on fast input IN16 LOW
The input must be configured in Interrupt or Counter mode.
In Interrupt mode, the measurement corresponds to the period between the last 2
edges (rising or falling without distinction).
In counter mode, only the rising edges are taken into account. To take falling edges
into account, the input polarity must be reversed (see parameter 200).

1131 Event period on fast input IN16 HIGH
1132 Event period on fast input IN17 LOW
1133 Event period on fast input IN17 HIGH
1134 Event period on fast input IN18 LOW
1135 Event period on fast input IN18 HIGH
1136 Event period on fast input IN19 LOW
1137 Event period on fast input IN19 HIGH
1138 Event period on fast input IN20 LOW
1139 Event period on fast input IN20 HIGH
1140 Event period on fast input IN21 LOW
1141 Event period on fast input IN21 HIGH
1142 Event period on fast input IN22 LOW
1143 Event period on fast input IN22 HIGH

1200 Number of connections on TCP clients (ICNC → client)
1201 TCP Client transmission error LOW
1202 TCP Client transmission error HIGH
1203 TCP Client frame counter LOW
1204 TCP Client frame counter HIGH

1220 Number of TCP clients connected (Client → ICNC) (10 max)
1221 Server TCP transmission error LOW
1222 Server TCP transmission error HIGH
1223 TCP frame counter Server LOW
1224 TCP frame counter Server HIGH

1230 Modbus RTU master mapping request counter 1 LOW

ICNCStudio Help

86 / 116

1231 Modbus RTU master mapping request counter 1 HIGH
1232 Modbus RTU master mapping request counter 2 LOW
1233 Modbus RTU master mapping request counter 2 HIGH
1234 Modbus RTU master mapping request counter 3 LOW
1235 Modbus RTU master mapping request counter 3 HIGH
1236 Modbus RTU master mapping request counter 4 LOW
1237 Modbus RTU master mapping request counter 4 HIGH
1238 Modbus RTU master mapping request counter 5 LOW
1239 Modbus RTU master mapping request counter 5 HIGH
1240 Modbus RTU master mapping request counter 6 LOW
1241 Modbus RTU master mapping request counter 6 HIGH
1242 Modbus RTU master mapping request counter 7 LOW
1243 Modbus RTU master mapping request counter 7 HIGH
1244 Modbus RTU master mapping request counter 8 LOW
1245 Modbus RTU master mapping request counter 8 HIGH
1246 Modbus RTU master mapping request counter 9 LOW
1247 Modbus RTU master mapping request counter 9 HIGH
1248 Modbus RTU master mapping request counter 10 LOW
1249 Modbus RTU master mapping request counter 10 HIGH
1250 Modbus RTU master mapping request counter 11 LOW
1251 Modbus RTU master mapping request counter 11 HIGH
1252 Modbus RTU master mapping request counter 12 LOW
1253 Modbus RTU master mapping request counter 12 HIGH
1254 Modbus RTU master mapping request counter 13 LOW
1255 Modbus RTU master mapping request counter 13 HIGH
1256 Modbus RTU master mapping request counter 14 LOW
1257 Modbus RTU master mapping request counter 14 HIGH
1258 Modbus RTU master mapping request counter 15 LOW
1259 Modbus RTU master mapping request counter 15 HIGH
1260 Modbus RTU master mapping request counter 16 LOW
1261 Modbus RTU master mapping request counter 16 HIGH

1262 Modbus RTU master mapping success counter 1 LOW
1263 Modbus RTU master mapping success counter 1 HIGH
1264 Modbus RTU master mapping success counter 2 LOW
1265 Modbus RTU master mapping success counter 2 HIGH
1266 Modbus RTU master mapping success counter 3 LOW
1267 Modbus RTU master mapping success counter 3 HIGH
1268 Modbus RTU master mapping success counter 4 LOW
1269 Modbus RTU master mapping success counter 4 HIGH
1270 Modbus RTU master mapping success counter 5 LOW
1271 Modbus RTU master mapping success counter 5 HIGH
1272 Modbus RTU master mapping success counter 6 LOW
1273 Modbus RTU master mapping success counter 6 HIGH
1274 Modbus RTU master mapping success counter 7 LOW
1275 Modbus RTU master mapping success counter 7 HIGH
1276 Modbus RTU master mapping success counter 8 LOW
1277 Modbus RTU master mapping success counter 8 HIGH
1278 Modbus RTU master mapping success counter 9 LOW
1279 Modbus RTU master mapping success counter 9 HIGH
1280 Modbus RTU master mapping success counter 10 LOW
1281 Modbus RTU master mapping success counter 10 HIGH
1282 Modbus RTU master mapping success counter 11 LOW

ICNCStudio Help

87 / 116

1283 Modbus RTU master mapping success counter 11 HIGH
1284 Modbus RTU master mapping success counter 12 LOW
1285 Modbus RTU master mapping success counter 12 HIGH
1286 Modbus RTU master mapping success counter 13 LOW
1287 Modbus RTU master mapping success counter 13 HIGH
1288 Modbus RTU master mapping success counter 14 LOW
1289 Modbus RTU master mapping success counter 14 HIGH
1290 Modbus RTU master mapping success counter 15 LOW
1291 Modbus RTU master mapping success counter 15 HIGH
1292 Modbus RTU master mapping success counter 16 LOW
1293 Modbus RTU master mapping success counter 16 HIGH

1294 Modbus RTU master mapping error counter 1 LOW
1295 Modbus RTU master mapping error counter 1 HIGH
1296 Modbus RTU master mapping error counter 2 LOW
1297 Modbus RTU master mapping error counter 2 HIGH
1298 Modbus RTU master mapping error counter 3 LOW
1299 Modbus RTU master mapping error counter 3 HIGH
1300 Modbus RTU master mapping error counter 4 LOW
1301 Modbus RTU master mapping error counter 4 HIGH
1302 Modbus RTU master mapping error counter 5 LOW
1303 Modbus RTU master mapping error counter 5 HIGH
1304 Modbus RTU master mapping error counter 6 LOW
1305 Modbus RTU master mapping error counter 6 HIGH
1306 Modbus RTU master mapping error counter 7 LOW
1307 Modbus RTU master mapping error counter 7 HIGH
1308 Modbus RTU master mapping error counter 8 LOW
1309 Modbus RTU master mapping error counter 8 HIGH
1310 Modbus RTU master mapping error counter 9 LOW
1311 Modbus RTU master mapping error counter 9 HIGH
1312 Modbus RTU master mapping error counter 10 LOW
1313 Modbus RTU master mapping error counter 10 HIGH
1314 Modbus RTU master mapping error counter 11 LOW
1315 Modbus RTU master mapping error counter 11 HIGH
1316 Modbus RTU master mapping error counter 12 LOW
1317 Modbus RTU master mapping error counter 12 HIGH
1318 Modbus RTU master mapping error counter 13 LOW
1319 Modbus RTU master mapping error counter 13 HIGH
1320 Modbus RTU master mapping error counter 14 LOW
1321 Modbus RTU master mapping error counter 14 HIGH
1322 Modbus RTU master mapping error counter 15 LOW
1323 Modbus RTU master mapping error counter 15 HIGH
1324 Modbus RTU master mapping error counter 16 LOW
1325 Modbus RTU master mapping error counter 16 HIGH

1350 ProbePosition Axe 1 LOW
1351 ProbePosition Axe 1 HIGH
1352 ProbePosition Axe 2 LOW
1353 ProbePosition Axe 2 HIGH
1354 ProbePosition Axe 3 LOW
1355 ProbePosition Axe 3 HIGH
1356 ProbePosition Axe 4 LOW
1357 ProbePosition Axe 4 HIGH

ICNCStudio Help

88 / 116

1358 ProbePosition Axe 5 LOW
1359 ProbePosition Axe 5 HIGH
1360 ProbePosition Axe 6 LOW
1361 ProbePosition Axe 6 HIGH

1998 DMX frame counter received LOW
1999 DMX frame counter received HIGH
2000 Size of DMX frame received
2001 to 2512 DMX channels. Value between 0 and 255

2990 Modbus CNC Buffer Size
2991 GRBL Command Buffer Size
2992 CNC planning buffer size

3000 Space available in the CNC Modbus communication buffer (4096 max)
3001 Space available in the Grbl CNC communication buffer (1024 max)
3002 Space available in the CNC planner buffer (35 max)

3003

CNC status
Bit 0: Alarm
Bit 1: Gcode in Test mode
Bit 2: CNC homing in progress
Bit 3: Cycle in progress
Bit 4: Pause in progress (Feed hold)
Bit 5: Jog in progress
Bit 6: Door safety active
Bit 7: Sleep mode active
Bit 8 Emergency stop active
Bit 9: Manual tool change in progress

3004

CNC alarm code:
0: no alarm
1: Limit per limit switch
2: Stroke limit by software
3: Cycle Aborted
4: Initial state of sensor contact faulty,
5: Probe contact detection error
6: Error related to initialization during homing
7: Error related to opening door during homing
8: Homing contact that remains engaged despite clearing
9: Homing contact not found (machine run)
10: Emergency stop activated
11: Homing sequence required
12: Abnormal probe contact detection
13: Triggering of the tool probe during the cycle or in Jog
14: Spindle ready signal timeout error
15: Maximum deviation tolerance between master/slave axes exceeded
16: Internal error
17: Fault detected on motor (Motor Error input)
18: Event detection timeout (modbus command 1012)

3010..3011 Current CNC travel speed (UINT32, mm/min)

3012

THC Status:
• b2: THC allowed. Activated by THCOn or THCOnAuto commands.
Reset by THCStop command.
• b6: Active THC. Activated by THCOn, THCOnAuto or THC Resume. Reset
by THCStop or THCPause. Indicates that THC is active.

ICNCStudio Help

89 / 116

• b9: THC locked due to underspeed compared to speed
cutting requested
• b11: Delay before activation in progress (parameter
Setting_THC_Delay)
• b12: Sampling for THC voltage auto adjustment in progress (if
sampling requested, this bit is also at 1 during the initial delay)
• b13: Sampling result is out of tolerance. There
Value used is limited to the allowed range. The bit goes back to 0 at
stop THC

3013,,3014
(int32, mV) Arc voltage measurement in mV. Automatic scaling in
depending on the offset and maximum measurement voltage parameters.
Indication
permanent even if the THC is inactive.

11000 to 11114 Buffer for Print commands (Used by ICNCStudio)
11125 to 11189 Buffer for Trace commands (64 bytes, Used by ICNCStudio)
12000 to 12999 Buffer for MCU memory reading (Used by ICNCStudio)
12000 to 12200 Buffer for NOR FLASH memory reading (Used by ICNCStudio)

Adresses of Holding registers (Read/write)

- 4X type variables -

These registers are used to action the InterpCNC card and to launch axis management
commands.

2000 to 2149 Buffer for MODBUS commands
2150 to 2157 Analog outputs AOUT0 to AOUT7
2160 to 2165 Mapping of outputs OUT0 to OUT95
2166 to 2191 Mapping of user bits (coils)
2360 to 2367 Encoder mode counter for 4 QEI channels

2380 to 2395

Discrete input fast counters IN17 to IN24 (unsigned 32-bit registers).
The input must be configured in Interrupt or Counter mode.
In interrupt mode, all state changes will be counted.
In counter mode, rising edges will be counted. To count the falling edges, it is
therefore necessary to invert the polarity of the input (see parameters 200).

2400 to 2411 Position counters for axes AXE1 to AXE 6 (signed 32-bit registers)

2412 to 2423 Current speeds (in pulses/s) of the axes during movement (not usable for CNC
commands)

2430 Normal Speed Override in CNC Mode
2431 Fast speed override in CNC mode

2444,,2445 (uint32_t, mV) Arc voltage setpoint for THC. Initialized by external control software
or by measurement sampling.

2446 (int16_t, mV) Offset applied to the arc voltage setpoint in real time for manual
adjustment

2447
(uint16_t, %) : Speed override on THC move (0% to 1000%)
This register acts in the same way as the speed gain parameter of the
THC settings. It is initialized to 100 on power-up. A Value of 0 will result in a THC
shutdown.

https://www.helpauthoringsoftware.com/articles/what-is-a-help-authoring-tool/

ICNCStudio Help

90 / 116

It can be modified at any time with immediate consideration. There
modification can also be done using a buffered register write action.

2800 to 2899

Indexes for indexed reads/writes. That is 50 32-bit registers allowing the indexing
of the different types of Modbus data.
0 to 65535 for read-only registers (Input registers)
100000 to 165535 for read/write registers (Holding registers)
200000 to 265535 for read-only bits (Input bits)
300000 to 365535 for read/write bits (Coils)

3000 to 3999 User registers in RAM (1000 16-bit registers)
4000 to 4999 User registers in saved RAM (1000 16-bit registers)
5000 DMX Master channel for DMX Master transmission
5001 to 5512 Values of the 512 DMX channels for DMX master transmission
9995 Size of recipes
9996 Index 0 recipe
9997 Index 1 recipe
9998 Index 2 recipe
9999 Index 3 recipe
10000 to 10999 Recipe page 0
11000 to 11999 Recipe page 1
12000 to 12999 Recipe page 2
13000 to 13999 Recipe page 3
32000 to 33999 InterpCNC parameters (index 0 to 1999, 2 registers per parameter)

62000 MB_HOLD_ADDR_MCU_MEMORY_ReadPtr_low (Self-incremented pointer to
read CPU memory content)

62001 MB_HOLD_ADDR_MCU_MEMORY_ReadPtr_high
62002 MB_HOLD_ADDR_FLASH_NAND_ReadPtr_low
62003 MB_HOLD_ADDR_FLASH_NAND_ReadPtr_high

About sending Modbus commands

Commands are sent to the InterpCNC through the command buffer located between
addresses 2000 and 2149 (Holding registers type variables).
Each command is identified by a command number detailed below.
You can use Modbus functions 06 (write single register) or 16 (write multiple registers) to
write to this buffer.
If you are limited to using the Modbus function 06, the event that will start command
processing is the writing of the command code located at address 2000. It is therefore
necessary to transfer the arguments beforehand of the command.

If you use the Modbus function 16, you can send all the arguments with the command code
on a single request.
If several masters or clients are connected to the InterpCNC, we strongly recommend that
you use the Modbus function 16 to avoid conflicting access to the command buffer.

Commande100 : Stop an axis

This command allows a single axis to be stopped, using its identifier.
It is equivalent to the Basic interpreter command: StopAxeID

Address 2000 2001

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

ICNCStudio Help

91 / 116

Parameter Command ID Axis ID
Value 100 1,,6

Command 101 : Stop one or several axes

This command is used to Stop one or more axes, identified by their respective bit on a 16-
bit word.
It is equivalent to the Basic interpreter command: StopAxes
The deceleration used is that indicated when launching the movement command.
You can check the effective stopping of the axes via status bits 256 to 261 "Axis moving"

Address 2000 2001
Parameter Command ID Axes bits

Value 101 0x01 à 0x3F

Command 102: Move an Axis at a given Speed

This command allows the movement of an axis until it reaches a given speed.
It is equivalent to the Basic shell command: MoveSpeed
The movement can be stopped by a stop command (command 100 or 101) or by
indicating a zero movement speed.
The actual stop can then be checked by the "Axis moving" status bits.

After launching a speed movement command, you still have the option of launching a
position movement command (command 103 or 104).

Address 2000 2001 2002 2003 2004 2005
Parameter Command ID Axis ID Accel/Decel Speed

Value 102 1,,6 LW Accel HW Accel LW Frequency HW Frequency

Command 103: Move an Axis to Target Position

The velocity profile is given by acceleration, velocity and deceleration.
This command moves an axis to a target position.
It is equivalent to the Basic interpreter command: MoveAxe
Each axis has its own profile generator. It is therefore possible to launch different
movements simultaneously on several axes.
As soon as a movement command is launched, the "Axis in motion" status bit associated
with the axis changes to 1. It returns to 0 when the target is reached.

It is also possible to change Target/Speed on the fly. That is, during an ongoing move. If the
new target requires a rollback, it will be executed automatically. The "axis in motion" status
bit does not go to 0 during the reversal of the direction of movement of the axis.

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/

ICNCStudio Help

92 / 116

Address 2000 200
1 2002 2003 2004 2005 2006 2007 2008 2009

Param Command
ID

Axis
ID Acceleration Speed Deceleration Position cible

Value 103 1,,6 LW
Accel

HW
Accel

LW
Frequency

HW
Frequency

LW
Frequency

HW
Frequency

LW
Target

HW
Target

Command 104: Move an axis specified number of steps from current position

The velocity profile is given by acceleration, velocity and deceleration.
This command allows an axis to be moved over a defined number of steps. It is equivalent
to the Basic interpreter command: MoveAxeRelatif
If an axis is moving in speed mode (command 102), you can issue a move command
relative to the current position. This allows for Example to trigger the continuous rotation of
a motor (function 102) until a cell is detected. When this information arrives, move the axis
a given distance.

Address 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Param Command
ID

Axis
ID Acceleration Speed Deceleration Number of

steps

Value 104 1,,6 LW
Accel

HW
Accel

LW
Frequency

HW
Frequency

LW
Frequency

HW
Frequency

LW
Target

HW
Target

Command 105: Write Current Position Counter (same as writing to position
registers)

This command is equivalent to the Basic interpreter command: SetPos(axis ID)
It is imperative never to change the position registers during a movement.

Address 2000 2001 2002 2003
Parameter Command ID Axis ID Position

Value 105 1,,6 LW Position HW Position

Command 106: Launch homing of an axis

The homing command is used to initialize the position of an axis after powering up using a
limit switch.
The homing procedure takes place in 3 stages:
· Rapid movement until a limit switch is detected
· Slow backspace until the limit signal is lost, The position register then takes the Value

of the argument "Home position to set"
· Complementary clearance movement relative to the position of loss of the Homing

signal (according to argument Clearance).

If the input used for the homing sequence is already assigned to the limit switch
management function, it is temporarily deactivated. So you can use a common sensor for

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/

ICNCStudio Help

93 / 116

the homing or limit switch function.
This command is equivalent to the Basic interpreter Home command:
2002: Homing Mode is still 0
2003: Input Number is the number of the input receiving the sensor.
2004: Expected Input state: Input state triggering the end of the procedure.
2014 and 2015: Max stroke = Max stroke (in steps)
2016: Tempo Reverse Direction, pause time (in ms), before returning to the sensor
2017 and 2018: Home Position to set, Value at which the front position counter is
initialized
 clearance (most often set to 0)
2019 and 2020: Clearance = Clearance relative to the original position (in steps)

You can launch homing sequences simultaneously on several axes.
When the homing procedure is launched, the "Homing in progress" status bit changes to 1.
It automatically returns to 0 when the homing is finished (with or without error).
If the homing did not take place normally or was interrupted by a Stop axis command, the
"Homing Error" status bit will be set to 1. Errors can be linked to incorrect parameters in
the command or to the fact that the input has not been activated within the maximum travel
distance allowed in the control.
The error bit automatically returns to 0 when launching a new homing command.
In a program using the homing function, it is therefore necessary to test the "Homing in
progress" status bit (bits 272 to 277) then, to check that it is working correctly using the
"Homing Error" bit (bits 280 to 285)
The argument "Home position to set" allows to indicate the Value that the position register
takes at the moment of the loss of the homing sensor during the reverse slow movement.
This argument can be positive or negative.

Let's take the Example where you want a homing position at 0 but 500 steps away from the
sensor. You must then indicate a homing position of -500 and a clearance of 500.

Address 2000 20
01

2002 2003 2004 2005 2006 2007 2008 2009

Paramet
er

Comm
and ID

Ax
e

ID

Homi
ng

Mode

Input
Numb

er

Expecte
d Input
State

Directio
n

High Speed Low Speed

Value 106 1,,
6

0 0,,25
5

0 or 1 0 : Neg
1

:Positiv
e

LW
High
speed

HW
High
speed

LW
Low
speed

LW
Low
speed

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Acceleration Deceleration Max

Stroke
Temp

o
Rever

se
Direct

ion

Home
Position to

set

Clearance

LW
Acceler

ation

HW
Accelera

tion

LW
Decelera

tion

HW
Deceler

ation

LW
Max
Strok

e

HW
Max
Stro
ke

Time
in ms

LW
Hom

e
Positi

on

HW
Hom

e
Positi

on

LW
Cleara

nce

HW
Cleara

nce

https://www.helpndoc.com/feature-tour/advanced-project-analyzer/
https://www.helpndoc.com/feature-tour/advanced-project-analyzer/

ICNCStudio Help

94 / 116

Command 107: Launch a Probe on an input

This command is equivalent to the Probe command of the Basic interpreter:

2002: Input Number is the number of the input receiving the sensor.
2003: Expected Input state is the expected state on the input for detection.
2010 and 2011: Max stroke corresponds to the Max stroke (in steps). It is a signed Value
whose ± sign indicates the direction.

The progress of the sequence is materialized by the status bits "Probe in progress" (status
bits 360 to 365) and "Probe Error". (status bits 368 to 373)
When launching the command, the "Probe in progress" bit changes to 1 and the "Probe
Error" bit changes to 0.

At the end of the sequence, the "Probe in progress" bit changes to 0. If an error has
occurred during the sequence or this sequence has been stopped by a stop axis
command, the "Probe error" bit will be activated . It is therefore appropriate to test the
"Probe Error" bit after the change to 0 of the "Probe in progress" bit.

The result of this command is the position of the axis when the indicated input is activated.
These positions are available in Inputs registers 1330 to 1341.

NB: Several probing sequences can be launched simultaneously on different axes.

Addr
ess

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 20102011

Para
m

Comm
and
ID

Axe
ID

Input
Num
ber

Expec
ted

Input
state

Acceleration Vitesse Deceleration Max
stroke
(signed
value →
Direction

)
Value 107 1,,6 0,,25

5
0 or 1 LW

Accelera
tion

HW
Accelera

tion

LW
Veloc

ity

HW
Veloc

ity

LW
Decelera

tion

HW
Deceler

ation

LW
Max
Stro
ke

HW
Max
Stro
ke

Fonction C associée :

int ICNC3_ProbeAxe(modbus_t *ctx,
 uint8_t AxeID,
 uint16_t InputNumber,
 uint8_t ExceptedInputState, /* 0 if DIN=0 when switch is pressed (NC contact type) */
 uint32_t Acceleration,
 uint32_t Speed,
 uint32_t Deceleration,
 int32_t StrokeLimitStep)

Command 108: Start Probing on Multiple Inputs

This command is used to move an axis until an end of movement condition is reached on
inputs DIN0 to DIN31

https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/

ICNCStudio Help

95 / 116

The sequence ends with the acquisition of the capture position when the following condition
is met:
(((ActualInputStates0_31 AND ANDMask) XOR XORMask) <> 0)

2012 and 2013: Max stroke corresponds to the Max stroke (in steps). It is a signed Value
whose ± sign indicates the direction.
The progress of the sequence is materialized by the status bits "Probe in progress" (status
bits 360 to 365) and "Probe Error". (status bits 368 to 373)
When launching the command, the "Probe in progress" bit changes to 1 and the "Probe
Error" bit changes to 0.
At the end of the sequence, the "Probe in progress" bit changes to 0. If an error has
occurred during the sequence or this sequence has been stopped by a stop axis
command, the "Probe error" bit will be activated . It is therefore appropriate to test the
"Probe Error" bit after the change to 0 of the "Probe in progress" bit.
The result of this command is the position of the axis when the result of the lmogic test is <>
0. These positions are available in the Inputs registers 1330 to 1341.

NB: Several probing sequences can be launched simultaneously on different axes.

Addr
ess

2000 200
1

200
2

200
4

200
5

200
6

2004 2007 2008 2009 2010 2011 2012 2013

Para
m

Comma
nd
ID

Ax
e ID

AND
mask

XOR
mask

Acceleration Speed Deceleration Max stroke
(signed value
→ Direction)

Valu
e

108 1,,6 LW
AN
D

ma
sk

HW

AN
D

ma
sk

LW

XO
R

mas
k

HW
XO
R

mas
k

LW
Acceler

ation

HW
Acceler

ation

LW
Veloci

ty

HW
Velo
city

LW
Deceler

ation

HW
Decelera

tion

LW
Max

Stroke

HW
Max

Stroke

Associated C function :
int ICNC3_ProbeAxeWithMask(modbus_t *ctx,
 uint8_t AxeID,
 uint32_t ANDMask,
 uint32_t XORMask,
 uint32_t Acceleration,
 uint32_t Speed,
 uint32_t Deceleration,
 int32_t StrokeLimitStep) ;

Command 109: Launch of a Probing on analog input threshold

This command allows you to move an axis until reaching a threshold on an analog input

The sequence ends with the acquisition of the capture position when the threshold is reached by
applying the following test:
If operator = 0: probing as long as the analog input is <= to the indicated threshold
If operator = 1: probing as long as the analog input is >= to the indicated threshold

2012 and 2013: Max stroke is in steps. It is a signed value whose ± sign indicates the direction.
The progress of the sequence is indicated by the status bits “Probe in progress” (status bits 360
to 365) and “Probe Error”. (status bits 368 to 373)
When the command is issued, the “Probe in progress” bit changes to 1 and the “Probe Error” bit
changes to 0.
At the end of the sequence, the “Probe in Progress” bit goes to 0.
If an error occurred during the sequence or this sequence was stopped by a stop axis

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

96 / 116

command, the “Probe error” bit will be activated and the captured position register will not be
updated. It is therefore appropriate to test the “Probe Error” bit after the “Probe in progress” bit
has gone to 0.
The result of this command is the position of the axis at the moment when the trigger threshold
is reached. These positions are available in Input registers 1330 to 1341.

NB: Several probing sequences can be launched simultaneously on different axes.

Addre
ss 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Para
m

Comma
nd ID

Axis
ID

AIN
numbe

r
Oper
ator

Thresol
d mV Acceleration Speed Deceleration

Max stroke
 (signed value
→ Direction)

Value 109 1,,6 0,,7 0,,1
0,,1000

0

LW
Accelerat

ion

HW
Accelerat

ion

LW
Veloc

ity

HW
Veloc

ity

LW
Decele
ration

HW
Deceler
ation

LW
Max

Stroke

HW
Max

Stroke

Associated C function :
int ICNC3_ProbeAxeOnAnalogInput(modbus_t* ctx,
 uint8_t AxeID,
 uint32_t AnalogInputNumber,
 uint32_t Operator,
 int32_t Threshold_mV,
 uint32_t Acceleration,
 uint32_t Speed,
 uint32_t Deceleration,
 int32_t StrokeLimitStep);

Exemple :

#define PROBE_UNTIL_AIN_LOWER_THAN_THRESHOLD 0
#define PROBE_UNTIL_AIN_GREATHER_THAN_THRESHOLD 1
#define STATUS_BIT_Z_PROBING_IN_PROGRESS 362 // Input bit #362
#define STATUS_BIT_Z_PROBING_ERROR 370 // Input bit #370
#define Z_PROBE_POSITION 354 // Input register #354, INT32

// Probe Z axis
// Analog input channel 0
// Move until AIN0 grather than 5000mV
// Accel = 10000Hs/s, Velocity = 1000Hz, Decel = 10000Hz/s
// Negative direction and maximum stroke of 2500 steps
//
// Return -1 in case of communication error
// Return 0 in case of probe error (ie, AIN0 level is greather than thresold
when probe start or thresold can't be reatch befon 2500 steps
// Return 1 with Probe position in case of success
//
int ProbeWithAnalogChanel(modbus_t* ctx, int* ProbePosition)
{

int res;
uint8_t inStatusBit;
int ProbePositionResult;

res = ICNC3_ProbeAxeOnAnalogInput(ctx, // Modbus handler context
(uint8_t)3, // Axe Z ID
0, // Analog input #0
PROBE_UNTIL_AIN_GREATHER_THAN_THRESHOLD, // Operator
5000, // 5000mV threshold

ICNCStudio Help

97 / 116

10000, // Acceleration (Hz/s)
1000, // Velocity (Hz)
10000, // Deceleration Hz/s
-2500); // 2500 steps in negative direction as limited stroke

if (res <= 0)
return -1; // Communication error

// Wait for en of probe or communication Error
do {

Sleep(100);

// Read Z probe in progress status bit
res = modbus_read_input_bits(ctx,

STATUS_BIT_Z_PROBING_IN_PROGRESS, 1, &inStatusBit);

} while ((inStatusBit == 1) || (res<=0));
if (res <= 0)

return -1; // Communication error

// Check for probe error
res = modbus_read_input_bits(ctx, STATUS_BIT_Z_PROBING_ERROR, 1,

&inStatusBit);
if (res <= 0)

return -1; // Communication error

if (inStatusBit != 0)
return 0; // Probe error

// Read probe position result
res = ICNC3_Get32bitsInputRegister(ctx, Z_PROBE_POSITION,

&ProbePositionResult);
if (res <= 0)

return -1; // Communication error

*ProbePosition = ProbePositionResult;
return 1; // Succes

Command 110: Force Inputs

This command is used to define the forcing of the state of an input.
It is equivalent to the Basic interpreter command: SetIn InputNumber, State
When a force is active, all the functions of the PLC using the inputs will only see the forced
state of this input.

Address 2000 2001 2002
Parameter Command ID Input Number Forcing

Value 110 0,,255 -1, 0 ou 1

-1 => No forcing
0 => Forcing to 0
1 => Forcing to 1

https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com

ICNCStudio Help

98 / 116

Command 200 : PLCBasic command

This command allows the Direct Launch of a PLCBasic command (exactly as if it were
sent from the 'Command:' line field from ICNCStudio). It is therefore executed immediately.

Address 2000 2001 2002 2003 --- 2001+n/2

Parameter Command
ID

Command
Length Cmd Cmd Cmd Cmd

Value 200 0,,255 Cmd[1] Cmd[0] Cmd[3] Cmd[2] --- --- 10 Cmd[n-1]

A command must end with a line break (CHR(10)).

The length of the command is expressed in the number of characters in the command
(including line break).
If the command has an odd number of characters, the last command register must be line
feed CHR(10).
A command can be launched even if the PLC program is running.
If a PLC program is in RUN mode, sending an incorrect command will cause the PLC
program to stop.

Using indexed Reads/Writes

This feature allows you to group the information you are interested in into a continuous
Modbus address range. It is thus possible to optimize the flow of communication.

You have 2 address ranges for this.
· the index area located at addresses 2800 to 2899, i.e. 50 32-bit registers.
· the Values zone indexed at addresses 2900 to 2950, i.e. 50 16-bit registers.

The index area must be initialized when your application is launched to point to the Modbus
information that you wish to group together. These indexes can point to Modbus variables
of different types (Holding registers, Input registers, Input bits or Coils).

After initializing this area according to your needs, you can read/write your data in the
indexed Values area. If indexes correspond to read-only variables, write operations will be
ignored.

Let's take an example of an application where you want to regularly read the following
information:

Input registers
1000: Status of inputs IN0 to IN15
1016: Moving Axis Flag Bits
1090: Analog input 0 status
3000: Space available in the CNC command buffer
3003: CNC status bits

Holding registers
2160: Status of outputs OUT0 to OUT15
2400-2401: Position Axis 1

https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/

ICNCStudio Help

99 / 116

2402-2403: Position Axis 2

This information being of various types (Holding and Input registers), it is interesting to use
indexing. Otherwise, reading all of this information requires a multitude of requests.

NB: To access the Holding registers through the Index table, add 100000 to the required
Modbus addresses,
add 200000 to access the addresses of the Input bits, and add 300000 to the addresses
of the Coils.

In this particular case, you must initialize the index table with the following values (coded in
32 bits):
[1000, 1016, 1090, 3000, 3003, 102160, 102400, 102401, 102402, 102403]

Consider the following Modbus array of indexes with correspondence in the Indexed
Values array:

Reading registers 2900 to 2909 in one request therefore allows us to obtain all the
required information.

CNC control functions

The InterpCNC has a buffered operating mode dedicated to the sequence of commands
independently of the communication times between the PC and the CNC.

Whatever the communication channel (USB, Ethernet, RS485), the protocol used is the
Modbus protocol.

We will distinguish 2 types of CNC controls:
· Buffered commands
· Immediate commands (= unbuffered)

Buffered CNC commands are numbered between 1000 and 1999.
Immediate effect CNC commands are numbered between 2000 and 2999

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

100 / 116

It is also possible to switch the communication protocol of the USB link to use a Grbl
compatible mode. This switch occurs automatically when receiving a frame of length <=4
characters and starting with '$' or Ctrl-X (chr(0x18)).
It remains active until the power is turned off.

Part 1: Buffered commands

There are 3 buffers used for the management of CNC functions:
1 buffer for communication with a Grbl compatible protocol on the USB link.
1 buffer for communication via Modbus commands.
1 buffer linked to commands processed by the motion planner.

The Grbl buffer makes it possible to exploit the embedded Gcode interpreter using many
applications available in open source. We will first detail the control of the CNC via the
Modbus protocol knowing that via this protocol and the Modbus 1000 command detailed
below, it is also possible to work with Gcode commands.

It should also be noted that the on-board PLC program can operate in parallel with the
processing of CNC commands. You can therefore have autonomous automation functions
that do not interfere with the management carried out by the control PC.

Buffered commands will be placed in the dedicated CNC communication buffer via
Modbus. They will then be processed by the planner to ensure the fluidity of the movements
and possibly the actions synchronized with these same movements.
Unbuffered commands that have an immediate effect. These are mainly functions for global
modification of operation such as gear changes, break requests, etc.

The space available in the CNC Modbus command buffer can be read in the register (Input
register 3000). Its size can be obtained by reading register 2990 (16-bit registers).
The space available in the buffer of orders processed by the scheduler can be read in the
fill level register of scheduled orders (Available size in Input register 2992).

You will find below the details of the commands necessary to operate the CNC functions.

Command 1000 : Executing a Gcode instruction

Sending a Gcode type instruction. The character string is broken down and placed in the
Modbus command sending buffer. Be careful to take into account the inversion per byte in
the 16-bit registers.
Length is the number of ASCII characters of the Gcode command.

The buffer used for this command is the Grbl command buffer and not the Modbus
command buffer.
It is therefore advisable to check the space available in this buffer before sending a new
command.
The space available in this buffer is accessible through the Input register 3001.

Addres 2000 2001 2002 2003 --- 2001+n/2

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

101 / 116

s
Parame

ter
Comm
and ID

Comm
and

Length
Cmd Cmd Cmd Cmd

Value 1000 0,,255 Cmd
[1]

Cmd
[0]

Cmd
[3]

Cmd[
2] --- --- Cmd[

n]
Cmd[n

-1]

Example : to send a Gcode command : G01 X12.2 F3000

Grbl buffer occupancy: 2 + Command Length / 2

Command 1001 : Definition of the machining speed in mm/min

Used to indicate the machining speed for the movement commands to follow. The Speed
Value is expressed in mm/min and of 16-bit unsigned integer type.
The initial Value of the machining speed at power-up is 1mm/min.

Adress 2000 2001 2002
Parameter Command ID float

Value 1001 Speed mm/mn

Occupancy in the Modbus buffer: 3 registers

Command 1002: Interpolated Linear Move of Axes to Target Positions (Absolute Positions)

This command is used to define the machining paths.

The first argument is used to define the speed to be taken into account (machining speed
or rapid speed) and also to indicate the axes concerned by the command. The length of the
frame will therefore depend on the number of axes to be moved.
The machining speed must first be set using command 1001.

The positions are given in mm and of float type. The axis resolutions must therefore be
correctly configured (see parameters 1100 to 1105).

Only the target positions of the axes to be moved and indicated in the first argument must
be sent in the frame.

Address 2000 2001 2002 2003 2004 2005 ...
Parameter Command ID Indicator Float Float ...

Value 1002 0x01 à
0x7F Position 1 (mm) Position 2 (mm) ...

Flag parameter detail:
· Bit 0 => The target of the X axis is indicated in the frame
· Bit 1 => The Y axis target is indicated in the frame
· Bit 2 => The Z axis target is indicated in the frame
· Bit 3 => The target of axis A is indicated in the frame
· Bit 4 => The B axis target is indicated in the frame

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

102 / 116

· Bit 5 => The C axis target is indicated in the frame
· Bit 6 => The movement speed is the maximum speed if the bit is at 1. Otherwise, the

machining speed is used

Occupancy in the Modbus buffer: 2 + 2 * Number of axes to move

Command 1003 : Circular interpolation

Allows you to create a circular interpolation type trajectory (Circle or arc of circle).
The movement is made at the speed indicated by the last ICNC3_PushSetFeedRate
command.

Address 2000 2001 2002 2003 2004 2005 2006 2007 200
8 2009

Parameter Command
ID Direction X Y I J

Value 1003 0 : CW
1 : CCW

Position X
(mm) Position Y (mm) Position I (mm) Position J

(mm)

Command 1010: Synchronized Action (Digital Output, Analog Output, Register)

Execution of a command synchronized with motions.

Commands can be of different types:
· Writing the state of a discrete output
· Writing an analog output
· Writing a Modbus register

You can place multiple synchronized actions in the buffer. They will all be associated with
the next movement command and executed before the movement concerned.
If no command is currently present in the buffer, the action is processed immediately.

Adress 2000 2001 2002 2003
Parameter Command ID Action Type Address Value

Value 1010 1, 2 or 3 According to type According to type

Action type 1: Definition of the state of an all or nothing output,
Action type 2: Set the state of an analog output
Action type 3: Writing to a Holding register.

Details of the different types of synchronized commands:

Address 2000 2001 2002 2003

Parameter Command ID Action Type Digital Output
number Value

Value 1010 1 0 to 255 0 to 1
Action type 1 : Write a discrete output

Address 2000 2001 2002 2003

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/

ICNCStudio Help

103 / 116

Parameter Command ID Action type Analog. Output
number Value

Value 1010 2 0 to 7 0 to 10000mV
Action Type 2: Write Analog Output

Address 2000 2001 2002 2003

Parameter Command ID Action type Register
Address Value

Value 1010 3 2000 to 65535 0 to 65535
Action type 3 : Write a Modbus register (Holding register)

Address 2000 2001 2002 2003
Parameter Command ID Action type Not used Not used

Value 1010 4 0 to 65535 0 to 65535
Action type 4 : THC Activation. Voltage setpoint fixed by control software in holding register
2444,,2445

Address 2000 2001 2002 2003

Parameter Command ID Action type
Duration

measurement
(ms)

Not used

Value 1010 5 0 to 65535 0 to 65535
Action type 5: Activation. Voltage set point set automatically by measuring the arc voltage
at the start of the cut. The result of the measurement is stored in the holding registers
2444,,2445

Address 2000 2001 2002 2003
Parameter Command ID Action type Not used Not used

Value 1010 6 0 to 65535 0 to 65535
Action type 6: Stop THC function, the Z axis is stopped at its current position. The
treatment of this action differs from the others. In particular, to allow resynchronization with
the next axis movement commands, this command will freeze the processing of commands
during the deceleration of Z if it is moving. Therefore, this action should not be used in the
middle of a trajectory.
If you need to freeze the THC in a cut, use the THCPause action (Type 7)

Address 2000 2001 2002 2003
Parameter Command ID Action type Not used Not used

Value 1010 7 0 to 65535 0 to 65535
Type 7 action: THC pause to suspend torch height control. If there is
a movement in progress, it is stopped.

Address 2000 2001 2002 2003

ICNCStudio Help

104 / 116

Parameter Command ID Action type Not used Not used
Value 1010 8 0 to 65535 0 to 65535

Type 8 action: THC resume to reactivate the THC that has been suspended by a
THCPause action (type 7).

All synchronized actions occupy 4 registers in the Modbus buffer.

Command 1011: Buffered Timeout

Execution of a timeout in the sequence of commands placed in the buffer.

Address 2000 2001
Parameter Command ID Duration of delay in ms

Value 1011 0,,65535

Occupation in the Modbus buffer: 2 registers

Command 1012: Wait for State or Event

Put the machine on hold for a state (DIN, AIN or register) or an event.
This command is used to stop the execution of buffered commands until a condition is met.

This command supports a timeout which can have the effect of stopping the machine and
putting it in an alarm state or letting the process run. The alarm code is 18,

You can for example use this command to control the spindle drive output which indicates
that the spindle has reached speed (wait for the state of an input).
Another possible use on a plasma cutting machine for detecting sheet metal contact
(waiting for a rising edge of the sheet metal probe).

Waiting for the status of a DIN input
Address 2000 2001 2002 2003 2004 2005

Parameter Command ID Action type Timeout
(ms)

Action
Timeout Hold Type DIN number

Value 1012 1 0..65535 0 or 1 1 to 4 0 to 255

Type of action = 1 for waiting for the status of a DIN input

Timeout: Maximum event wait time (in milliseconds)

Action Timeout:
= 0 => continue normally in case of timeout,
= 1 => Stop and alarm in case of timeout, The timeout alarm code is 18
Hold type:
1: Waiting for a rising edge on the input
2: Waiting for a falling edge on the input
3: Waiting for high state
4: Waiting for low state

https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/
https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

105 / 116

DIN number: Entry number concerned by the wait (0 to 255)

Waiting for the state of an analog input
Address 2000 2001 2002 2003 2004 2005 2006

ParameterCommand
ID

Action
type

Timeout
(ms)

Timeout
Action Hold type Voltage

threshold AIN number

Value 1012 2 0..65535 0 or 1 1 to 3 0,,10000 0,,7

Type Action = 2 for waiting for the level of an analog input (AIN0 to AIN7)

Timeout: Maximum event wait time (in milliseconds)

Action Timeout:
= 0 => continue normally in case of timeout,
= 1 => Stop and alarm in case of timeout, The timeout alarm code is 18

Hold type:
1: Wait for analog input to fall below a threshold
2: Wait for analog input to be above a threshold
3: Waiting for analog input to equal a Value

Threshold: Expected Threshold or Value expressed in mv

AIN number: Analog input number affected by the wait

Waiting for the Value of modbus information (register or bit)
Address 2000 2001 2002 2003 2004 2005 2006 (LW) 2007 (HW)

Parameter Command
ID

Action
type

Timeout
(ms)

Action
Timeout

Hold
type Treshold Extended modbus address

Value 1012 3 0..65535 0 or 1 1 to 4 0,,65535 0,,365535

Type Action = 3 for Value waiting for modbus information

Timeout: Maximum event wait time (in milliseconds)

Action Timeout:
= 0 => continue normally in case of timeout,
= 1 => Stop and alarm in case of timeout, The timeout alarm code is 18

Hold type:
1: Wait until Value modbus is below a threshold
2: Wait for modbus Value to be above a threshold
3: Waiting for modbus Value to equal a Value

Modbus address to monitor:
The address is indicated in a 32-bit format to allow access to the different types of modbus
variables.
For a register of type Input register: Address between 0 and 65535
For a Holding register: Address between 100000 and 165535
For an Input bit type bit: Address between 200000 and 265535
For a Coil bit type bit: Address between 300000 and 265535

ICNCStudio Help

106 / 116

Threshold: Expected Threshold or Value. For Values of type Bit, Value of 0 or 1

Part 2: Unbuffered Commands

Command 1100: Edit Override Machining and Rapid Traverse

Immediate action to modify the machining speed (feed rate) and out of material (Rapid
Move).
The machining speed override depends on the current machining speed.

You can also read/write these Values directly in Holding registers 2430 and 2431.

Address 2000 2001 2002

Parameter Command ID Override machining
in %

Override Out of material
in %

Value 1005 0..65535 0..65535

Command 1101: Pause machining in progress

Preferably use command 1200 with function code 130

Immediate stop of movements in progress. The buffers are not emptied.

It is also possible to assign a discrete input for pausing machining via parameter 951. You
must then indicate an input number from 0 to 255 assigned to this function. To inhibit it,
indicate a number of -1.

Address 2000
Parameter Command ID

Value 1101

Command 1102: Resume interrupted machining

Preferably use command 1200 with function code 129

Resuming the machining in progress

It is also possible to assign a discrete input for resuming machining via parameter 952.
You must then indicate an input number from 0 to 255 assigned to this function. To inhibit it,
indicate a number of -1.

https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/feature-tour/create-chm-help-files/
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

ICNCStudio Help

107 / 116

Address 2000
Parameter Command ID

Value 1102

Command 1110: Execute a homing machine sequence

Launch of a homing command according to the pre-configured internal parameters.

Address 2000 2001
Parameter Command ID Concerned axes

Value 1110 0..31

Axes concerned:
0: launch the entire homing sequence specified in the parameters
1,,6: Specify axis to initialize

Command 1111: Execution of a manual move (Jog)

This command is used to move the axes in relative or absolute mode. It will only be taken
into account if the current CNC status is "Idle" or "Jog",
Jogs in progress can be interrupted by the direct command "Stop Jog" (command 120 0,
function 133).
You can combine the simultaneous movements of several axes. The indicated speed will
be the combined speed of the different movements.
As with linear movement commands, the length of the frame depends on the number of
axes to be moved.
The axis positions must be given in ascending order of axis indexes.
Example, to move the X and Z axes, Indicator will be 5, the positions will be given with
Position X then Position Z.
If bit 6 of the indicator of the axes to be moved is at 0, the positions will be absolute
positions. If the bit is 1, it will be a relative position.

For manual movements, it is recommended to use this Jog command in incremental mode.
In the event of a communication breakdown, movements will be automatically limited.

Address 2000 2001 2002 2003 2004 2005 2006 2007 ...

Parameter Command
ID Indicator Float Float Float ...

Value 1111 0x01 to 0x7F Speed
(m/mn)

Position 1
(mm)

Position 2
(mm) ...

Detail of the Indicator parameter:
· Bit 0 => The target of the X axis is indicated in the frame
· Bit 1 => The Y axis target is indicated in the frame

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/
https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

ICNCStudio Help

108 / 116

· Bit 2 => The Z axis target is indicated in the frame
· Bit 3 => The target of axis A is indicated in the frame
· Bit 4 => The B axis target is indicated in the frame
· Bit 5 => The C axis target is indicated in the frame
· Bit 6 => 0 → Absolute positions; 1->Relative positions

Command 1200: Direct execution of a command

This command allows you to act immediately on the operation of the CNC. It is used for
real-time control over various parameters and the operating status of the machine.

Address 2000 2001
Parameter Command ID Function code

Value 1200 0..255

Possible subcommand values:

Function code Action Details
88 Alarm acknowledgment

129 Machining recovery Resuming machining after pausing
130 Machining pause Pausing machining,

spindle stop
The buffers are not emptied.

133 Stop Jog Stopping a running jog motion

138 Cancel overspeed machiningMachining overspeed returns to 100%
143 Cancel fast overspeed Out of material overspeed returns to 100%
153 Annuler survitesse broche Spindle overspeed returns to 100%

255 Immediate stop CNC motion stop with ramp
deceleration. If THC is active, it is stopped,
Command and planning buffers
are also purged.

Using the internal clock (RTC)

The InterpCNC has an internal clock to manage the date and time. However, this clock is not
saved when the power is turned off. It should therefore be initialized before using its functions.

Initialization can be done by:

Modbus commands 112, 113 and 114,
The PLC program using the RTC command,
Automatically via an SNTP server if the InterpCNC has internet access.

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/feature-tour/produce-html-websites/
https://www.helpndoc.com/feature-tour/produce-html-websites/

ICNCStudio Help

109 / 116

For automatic update by STNP, parameters 546 and 547 must be set correctly. The SNTP
server used is “sntp.pool.org”.

The clock will then be initialized taking into account the time zone indicated in parameter 547 and
summer/winter time if bit b1 of parameter 547 is active.

You have 2 status bits that allow you to determine the synchronization status:

stsBit(STS_RTC_SYNCHRONIZED) which indicates that the clock has been set,

stsBit(STS_SNTP_CONNECTED) which indicates that an SNTP connection is established.

SNTP server synchronization, if enabled, is automatically renewed every hour.

It is possible to read the different clock registers (time, date) in the Input Registers 1987 to 1995.

In the PLC program, in the case of read-only registers, 100000 should be added to the address
for reading with the GetMW command. To read these registers, the commands will therefore be
GetMW(101987) to GetMW(101995)

Note for reading through modbus registers:
To obtain consistent data, reading the Input Register 1987 (RTC Time) causes the creation of a
buffer storing the current date and time. This buffer remains valid for at least 100ms. The ideal is
therefore to read all the information required in this period of time.

Numerous PLCBasic functions are also available to exploit the RTC clock. They are detailed in
the specific PLCBasic documentation.

Command 112: Set Date on RTC Clock

This command is used to set the date of the PLC's internal clock.

Address 2000 2001 2002 2003
Parameter Command ID Day Month Year

Value 112 1,,31 1,,12 0,,99

Command 113: Set Time to RTC Clock

This command is used to set the time of the PLC's internal clock.

Address 2000 2001 2002 2003
Parameter Command ID hours minutes seconds

Value 113 0,,23 0,,59 0,,59

https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com/feature-tour/stunning-user-interface/
https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

ICNCStudio Help

110 / 116

Command 114: Simultaneous setting of date and time on the RTC clock

This command is used to simultaneously set the date and time of the PLC's internal clock.

Address 2000 2001 2002 2003 2004 2005 2006

Parameter
Command

ID Day Month Year Hours Minutes Seconds

Value 114 1,,31 1,,12 0,,99 0,,23 0,,59 0,,59

Miscellaneous settings

This chapter deals with advanced features, offered by both hardware and firmware of the
card,
 and easily configurable from ICNCStudio.

Password protection

In some cases, and especially for industrial applications, password protection is
necessary.

This allows you to protect your PLC Basic program against reading, against writing, or
both.

This allows for Example to prevent the use of a machine with a program other than the one
with which it was delivered,
 or even to recover the embedded program to use it on another machine of which it would
have been made an unauthorized clone.

https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-hlp-winhelp-help-file-to-a-chm-html-help-help-file/
https://www.helpndoc.com/step-by-step-guides/how-to-convert-a-word-docx-file-to-an-epub-or-kindle-ebook/

ICNCStudio Help

111 / 116

Card lock

- Choose and check the Protected Read ("Lecture protégée") and/or Protected Write
("Écriture protégée") option
- Choose a password, and click on Validate
-> a new window asks you to confirm the chosen password.
Then click on Send to PLC. The closed padlock symbol appears.
For more details, see Password Protection, in the General Configuration chapter.

Unlocking the card

Click on the padlock, and enter your password.
- Uncheck the lock options, and click on Send to PLC
NB: the password chosen previously remains in automatic entry not readable in its entry
field, even if the card is unlocked.

Warning: If your password has been permanently forgotten, in this case you will
have to contact the SOPROLEC company to obtain an unlocking code which will
be generated specifically for your card.

Trick

The Load from PLC button (or type reboot in the command line of the Basic editor) can
allow you to refresh the state if you no longer know where you are.

Standard inputs

For each input from DIN0 to DIN15, it is possible to reverse its polarity.
It is also possible to adjust its sensitivity, using 3 levels of Debounce filter ('Filtre anti-
rebond') : 10, 30, or 100ms

This filter can use the filtering level selected according to 3 modes:
Off, Low Pass, or Sampling.
For the choice of the Debounce mode see the explanation given in the DIN section of the
table of parameters.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

112 / 116

Fast inputs

1 Use of inputs in Encoder Mode (17 to 22)

We can have 3 encoders because 2 fast inputs are required for each of the encoders.
Channel 0: inputs 21 and 22. Frequency up to 1Mhz
Channel 1: inputs 19 and 20. Frequency up to 50 khz
Channel 2: inputs 17 and 18. Frequency up to 50 khz
Card parameters 221 to 226 must be configured in Mode 4 (4X, all edges are taken into
account), or in Mode 3 (2X, 1 edge out of 2 is taken into account).

GetEncoder(: Returns the position of an encoder input
Syntax: GetEncoder(Channel) 'Channel: 1 to 3
Example: SetMDW 3018, GetEncoder(3)

SetEncoder: Assignment of a Value to an encoder input
Syntax: SetEncoder Channel, Value ‘Channel: 1 to 3.
Example: SetEncoder 3, 0' Set encoder input #3 to 0

2 Using Inputs in Counter Mode (16 to 22)

We can therefore have 7 counters. Card parameters 220 to 226 are to be configured:

https://www.helpndoc.com/feature-tour/advanced-project-analyzer/
https://www.helpndoc.com/feature-tour/advanced-project-analyzer/

ICNCStudio Help

113 / 116

In mode 0 (standard), the refreshing of the table storing the state of the inputs takes place
every millisecond.
In mode 1 (on "IT" interrupt), the refresh of the array storing the state of the inputs takes
place on each interrupt accessing it.
In mode 2 (Counter mode), the refresh of the table storing the state of the inputs takes
place on each edge (rising or falling, depending on the configuration of the polarity of the
inputs (card parameter 200)).

GetCnt(: Read one of the counters associated with fast inputs 16-22.
The result is an unsigned integer.
Syntax: GetCnt(CounterNo)
CounterNo = 1 to 7
Example: SetMDW 3018, GetCnt(4) 'Writes to address 3018 the Value read from counter
#4

SetCnt: Write to the counters of fast inputs 16 to 22. The InterpCNC has 7 fast inputs which
can be used as count inputs.
Syntax: SetCnt CounterNo, Value
Counter No = 1 to 7
Value = Counter value
Example: SetCnt 4, 0 'Resets counter 4 to 0

Using Analog inputs as Digital inputs

If more "on/off" digital inputs than the 24 available are required, it is also possible to use
the analog inputs. These will be mapped as DIN23 to DN26.

A parameter (312) is used to define the level from which a high level is considered (600
mV by default)

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

ICNCStudio Help

114 / 116

A parameter (313) is used to define the level below which a low level is considered (500
mV by default)

The Values are entered directly in mV (from 0 to 10000).

The polarity of these inputs can also be reversed, for example for the use of Normally
Closed type contacts.
To do this, check the corresponding option on the Digital Inputs ("Entrée Digitales") page,
from the above "Parameters" menu.

 I/O expansion modules

Card configuration for use of a Kinco I/O expansion module:

The mapping system (also called polling) makes it possible to transmit with adjustable
refresh rate, Modbus frames to control and exchange data with all types of peripherals
(variators, drivers, HMI, PLC, etc.)

Example with a Kinco I/O expansion module:
the KS123-14DR -> 6 outputs/relays and 8 inputs, connected to COM2

RS485 Modbus connection:
D+ on A
D- on B

1) In the card parameters table, configure COM2:
420 -> 2 for Master (InterpCNC V3 card is Master)

https://www.helpndoc.com/help-authoring-tool

ICNCStudio Help

115 / 116

421 -> Baud Rate (ex: 38400)
422 -> 8 (data bits)
423 -> 0 (Parity)
424 -> 1 (Stop Bits)
425 -> 1 (Modbus Slave ID)

2) Redefine a mapping for the inputs,
and a mapping for the outputs:

Here, the state of the 6 module outputs will be controlled by the state of the 6 Coils
(Modbus bits) n° 110 to 115.
The 8 inputs are mapped to virtual inputs 32 to 39 (DIN).

This state will be refreshed by a reading every 50ms.
NB: The Slave ID is the modbus address of the module (it can be redefined using a small
Kinco utility).

Of course, this type of module does not make it possible to benefit from inputs and outputs
as fast as those of the InterpCNC V3 (especially since the outputs of these modules are on
relays), but in certain applications this solution can be interesting because you are no
longer limited to 16 digital inputs and 16 digital outputs.

Exports and Imports of files

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com

ICNCStudio Help

116 / 116

On the File tab of the Menu bar:

→ The option « Sauvegarde Configuration InterpCNC ».
This saves the following data in the form of an .ini file:

→ Map Settings export.
→ Export of Saved Memory (EEprom)
→ Export Recipes

The option « Restaurer Configuration InterpCNC » allows, as its name suggests, to
reload from the .ini file, the parameters and registers from a previous backup.

All or part of these 3 sections can be saved or restored (options to be checked).

→ The Export Declaration Kinco Address Tag, is a very useful function that generates a
.csv file associating the name (Tag) assigned to each Bit or Register used in our
PLCBasic program, with its Modbus address and its type of access (read, read/write: 0X,
1X, 3X, 4X, etc.).

This file is then extremely practical for the design of HMI screens associated with your
PLCBasic program, with DTools or HMIWare software from the Kinco brand.
Then just import your Address Tag .csv file with the "Import Address Tag" command.

In your design project, you then have the pages of your HMI, the same naming of the bits
and registers, and the Modbus addresses used by the card.
The development of HMI Kinco screens is thus really facilitated.

On the PLC Edit tab:

→ The option Export Programme Analysé. This function is used to save in .txt format,
your PLCBasic program in raw format, ie without comments and where each constant
name is replaced by its numerical Value.
This .txt file can then be opened, and a 'Copy/Paste' of its contents to the PLC program
window gives an overview of the program as it is executed by the card's Basic interpreter.

https://www.helpndoc.com/step-by-step-guides/how-to-generate-an-encrypted-password-protected-pdf-document/

	PLC_Basic_Interpreter
	Introduction
	General
	Error processing
	Quick PLC Basic manual
	FUNCTIONS
	PLC Basic functions specific to InterpCNC V3
	Accessing User Bits and Registers (Read only)
	Accessing System Bits and Registers (Read only)
	Accessing Input Registers (Read Only)

	Mathematic functions
	Axis motion functions
	Timers functions
	Input and Output functions
	Edge detection functions for Inputs or User Bits (coils)
	Character strings manipulation functions

	COMMANDS
	Commands from standard Basic
	Program management functions
	PLC Basic commands specific to InterpCNC V3
	Write Access to User Registers and User Bits (Holding Registers and Coils)

	Commands specific to InterpCNC V3 hardware
	Recipe management commands
	Axis motion commands
	Timers commands
	Input and Output commands

	IMPLEMENTING A GRAFCET (SFC) USING « Select Case» instruction
	USING INTERRUPTS
	USING THE FAST DIGITAL INPUTS (from #16 to 22)
	COMMUNICATION WITH MODBUS DRIVES OR OTHER DEVICES
	ETHERNET COMMUNICATION
	USING DMX COMMUNICATION
	USING REAL TIME CLOCK (RTC)

	ICNCStudio
	User_Registers
	Saved_registers
	Axes_window
	Monitor
	Digital_inputs
	Digital_outputs
	Coils
	Text_editor
	Find_Replace
	Main
	Parameters_table
	Recipes
	PLC_variables
	Custom_Data
	Charts
	Analog_Counters
	Firmware_update
	ICNCStudio_update
	Encryption
	Parameters
	General_configuration
	Axes
	DIN
	AIN
	IN_ENA
	Serial_port
	Polling
	Ethernet
	Digital_control
	Plasma_thc

	Release_note

	InterpCNC V3 manual
	Presentation
	Setup
	Wiring

	MODBUS_documentation
	Introduction
	Identification of InterpCNC PLCs connected to the Ethernet network
	Identification of InterpCNC PLCs connected via USB

	Read/Write Parameters
	Adresses of Input Bits (Read only)
	Adresses of Input registers (Read only)
	Adresses of Holding registers (Read/write)
	About sending Modbus commands
	Commande100 : Stop an axis
	Command 101 : Stop one or several axes
	Command 102: Move an Axis at a given Speed
	Command 103: Move an Axis to Target Position
	Command 104: Move an axis specified number of steps from current position
	Command 105: Write Current Position Counter (same as writing to position registers)
	Command 106: Launch homing of an axis
	Command 107: Launch a Probe on an input
	Command 108: Start Probing on Multiple Inputs
	Command 109: Launch of a Probing on analog input threshold
	Command 110: Force Inputs
	Command 200 : PLCBasic command

	Using indexed Reads/Writes
	CNC control functions
	Part 1: Buffered commands
	Command 1000 : Executing a Gcode instruction
	Command 1001 : Definition of the machining speed in mm/min
	Command 1002: Interpolated Linear Move of Axes to Target Positions (Absolute Positions)
	Command 1003 : Circular interpolation
	Command 1010: Synchronized Action (Digital Output, Analog Output, Register)
	Command 1011: Buffered Timeout
	Command 1012: Wait for State or Event

	Part 2: Unbuffered Commands
	Command 1100: Edit Override Machining and Rapid Traverse
	Command 1101: Pause machining in progress
	Command 1102: Resume interrupted machining
	Command 1110: Execute a homing machine sequence
	Command 1111: Execution of a manual move (Jog)
	Command 1200: Direct execution of a command

	Using the internal clock (RTC)
	Command 112: Set Date on RTC Clock
	Command 113: Set Time to RTC Clock
	Command 114: Simultaneous setting of date and time on the RTC clock

	Miscellaneous settings
	Password protection
	Standard inputs
	Fast inputs
	Using Analog inputs as Digital inputs
	 I/O expansion modules
	Exports and Imports of files

